高周波アナログLSIのテスト容易化回路

Analog BIST: A Proposal for High-Frequency Analog LSI Testing

早坂 直人 小林 春夫 小室 貴紀 † 酒寄 寛 † 群馬大学工学部電気電子工学科 〒 376-8515 群馬県桐生市天神町 1-5-1 Tel: 0277-30-1788 Fax: 0277-30-1707 e-mail:k_haruo@el.gunma-u.ac.jp †アジレント・テクノロジー・インターナショナル(株) SOC テスト事業部 製品開発部 〒 192-8510 東京都八王子市高倉町 9-1 e-mail:{takanori_komuro,hiroshi_sakayori}@agilent.com Naoto Hayasaka Haruo Kobayashi Takanori Komuro † Hiroshi Sakayori † Electronic Eng. Dept., Gunma University † Agilent Technologies International Japan, Ltd.

概要 この論文では高周波アナログLSIのアナログ出力 信号ピンの前段(チップ内)に広帯域・高精度サンプラ 回路を設けテスト容易化を図り、テストの技術的困難さ とコストの問題を低減することを提案する。そのサンプ ラ回路はテスト時に入力信号が繰り返し波形であること を利用して、上位ビットは逐次比較近似ADCでデジタル 的に生成し、残りの下位ビットはトラック・ホールド回路 でアナログ的に生成する。このことでアナログ回路への 性能要求が緩和されるので、様々な CMOS プロセス、電 源電圧の被テスト LSI 内で比較的容易に全体として広帯 域・高精度サンプラ回路を実現できる。この CMOS サン プラ回路を IP 化し様々な高周波アナログ LSI に内臓する ことで、そのテスト容易化・テストコスト削減を実現し ていく。

キーワード: LSI テスト、アナログ回路、BIST、サンプ ラ、等価時間サンプリング、逐次比較 ADC

I. 研究背景

近年、携帯電話、無線LAN、Bluetooh 等に用いられて いる高周波アナログ混載 LSI はそのテストが技術的に難 しくなってきている。またそのテストのためには高価な LSIテスター、オシロスコープ、スペクトル・アナライザ 等を用いる必要がありテスト・コストが問題になってき ている。たとえば携帯電話などの送受信機 LSI ではその テスト容易化のために送信機出力を直接受信機に入力し てテストを行うループバック法がよく用いられ、これに よりオシロスコープを用いずに送受信機の基本機能を確 認することができる。(図1) しかしこの方法では送信 部から発生されている信号成分は評価できるが不要スプ リアス成分は評価できず、カバーできるテスト項目に制 限がある。また、デジタル LSI に関してはスキャンパス 法等の標準的な BIST (Built-in-Self-Test、チップ内蔵自 己テスト回路)、テスト容易化設計手法が確立しているが [1]、アナログ LSI では BIST が実用化されている例は少

ない。[2, 3, 4]

この論文では高周波信号を出力するLSIの高精度テスト のためにデジタル技術とアナログ技術の併用により、チッ プ内のアナログ出力信号ピン前段に広帯域・高精度・低電 圧 CMOS サンプラ回路を実現することを提案し、その回 路構成、動作を示す。

II. アナログ BIST 回路の提案

高周波アナログ混載 LSI テストの問題の一側面を解決 するため、アナログ出力信号ピンの前段(チップ内)にテ スト用として広帯域・高精度サンプラ回路を設けテスト容 易化を図ることを提案する。(図 2 (a)) テスト時にはこ のサンプラ回路を用いることでその出力はほぼ DC 信号 となり高周波信号のゆえの信号減衰がなくなり、また後 段には高価な高速・高周波電子計測器は不要となる。(こ れに対し外部にサンプラ回路を設けた場合は、チップと サンプラ回路間の寄生容量により高周波信号波形の劣化 が引き起こされてしまう(図 2 (b))。)この出力ピンの信 号は繰り返し波形になるように被測定回路への入力信号 を与えることで、全体の出力波形は等価サンプリング技 術(図 3、付録 1 および [5, 6, 7] 参照)によって再合成す ることができる。

高周波アナログ混載 LSI は CMOS で実現される割合が 増え、また CMOS の微細化に伴い電源電圧は下がる。こ のチップ内埋め込みサンプラ回路にはたとえば数 GHz 以 上の帯域、10~12bit の精度程度が要求されるが、この性 能は低電圧化にともない直接的な実現は困難になってき ている。高周波アナログ混載 LSI は様々な CMOS プロセ ス、電源電圧で実現され、そこに埋め込こまれるテスト容 易化用サンプラ回路はその様々な使用 CMOS プロセス、 電源電圧に対してこの仕様を実現できる構成でなければな らない。たとえば、0.35µm CMOS で 3.3V 動作、0.25µm CMOS で 2.5V 動作、0.18µm CMOS で 1.8V 動作、いず れの LSI の場合も大きな設計変更なしに(W, L サイズと バイアスの調整程度で)GHz以上の帯域、10-12bit 程度 の精度のサンプラ回路構成を実現したい。このためには トランジスタ・レベルの回路技術だけでは対応が困難で あるので、デジタル技術とアナログ技術の併用によりこ の問題を解決する。

なお、[8,9] でチップ内 CMOS サンプラ回路が実現報告 されているが、その主な目的は"Signal Integrity"のチェッ クのためであり、また帯域は数百 GHz 以上であるが精度 は6ビット前後であり、ここでの目的・仕様とは異なる。 また、実現法に関しては [8,9] は"コヒーレント・サンプ リング技術"を用いているのに対し、ここでは"シーケン シャル・サンプリング技術"を用いている。

III. 提案アナログ BIST 回路の構成と動作

提案方式の全体および構成要素である等価時間サンプ リング(シーケンシャル・サンプリング)パルス生成回 路、逐次比較近似 ADC、トラックホールド回路の構成と 動作を述べる。トリガ回路については付録 2 に示す。

3.1 全体構成

高周波アナログ LSI のテスト・モード時にはアナログ 出力が繰り返し信号で等価サンプリング技術(特にシーケ ンシャル・サンプリング技術、付録1参照)を利用できる ことを用い、上位 4-5bit を逐次比較近似 ADC 出力とし、 下位 5~7bit をアナログ回路(Track/Hold 回路部)で出 力する回路構成を提案する。(図 4)テスト時にアナログ 出力信号、すなわちサンプラ回路への入力信号は繰り返 し波形なのでトリガ後のあるタイミングの信号が何回も 出現するのでその値をホールドする必要がなく(すなわ ち広帯域 Track/Hold 回路は不要で)逐次比較近似 ADC が実現できる。(図 5)

例えば、最初のトリガ後のあるタイミング Δt の入力 信号 $V_{in(1)}$ と参照電圧 $V_{ref}/2$ の比較を行い、 $V_{in(1)} \ge$ $V_{ref}/2$ ならば次のトリガ後の Δt のタイミングでの入力 信号 $V_{in(2)}$ と $(3/4)V_{ref}$ の比較を行う。繰り返し信号なの で $V_{in(1)} = V_{in(2)}$ になる。この逐次比較近似の動作を N 回繰り返し、その N 回目で得た入力信号に最も近い参照 電圧値を V'_{ref} とする。 (N+1) 回目のトリガ後の Δt の入 力信号 $V_{in(N+1)}$ と参照電圧 V'_{ref} の差 $V_{in(N+1)} - V'_{ref}$ を 差動アンプで得てホールドして出力し、チップ外の ADC でデジタル信号に変換する。このための T/H 回路は入力 信号 $V_{in(N+1)} - V'_{ref}$ がレンジが小さくまた精度が低くて よいことから (例えば開ループ構成で広帯域に) 比較的容 易に実現できる。これをトリガ後のタイミング 2 Δt , 3 Δt , 4 Δt , ... に対して繰り返して行い、等価時間サンプリング の考え方で波形を再合成する。

図 6 に下位ビット生成についての説明図を示す。遂次 比較近似 ADC により 4-5bit 精度でどこの領域に入力信 号があるのかを探し、その近辺の基準電圧 V_r と入力信号 の差を T/H 回路で計測し V_{out} として出力する。このと き差動アンプの一方にその近辺の基準電圧 V_r を、他方に 入力信号を入力する。両方の信号がほぼ等しいので、こ の範囲では差動アンプは良い入出力線形性が得られ、ま た開ループ構成なので広帯域が実現できる。この T/H 回 路出力をチップ外で増幅して AD 変換し、逐次近似 AD 変換をした上位のビットとあわせて全体の精度を得る。。 差動アンプは遂次比較近似 ADC の動作のときにはコンパ レータ(の前段のアンプ)として、T/H 回路として動作 するときには線形なアナログ差動アンプとして働く。

上位ビットをデジタル出力することで、下位ビット生 成のためのアナログ回路部(T/H回路)は入力レンジが 狭い範囲での5~7bit 精度を出せばよいことになるので低 電圧化でも実現し易く、全体として等価的に高精度・広帯 域のサンプラ回路をチップ内部に実現することができる。

3.2 サンプリングパルス生成回路部

シーケンシャル・サンプリングは、最初のトリガ信号 のΔt時間後サンプリングを行い、次のトリガ信号の2Δt 時間後、その次のトリガ信号3Δt時間後等、次々とサン プリングを行う方式である。このためのサンプリング・パ ルスの生成は次のように行う。(図7)

(i) 繰り返し入力信号の起点のトリガ信号が入るとスルーレート V_R(V/s) のランプ波をスタートさせる。

 (ii) このランプ波が事前に外部で設定したある電圧レベル V_{DAC1}を過ぎる時点でサンプリングパルスを発生させ、
繰り返し信号の瞬時値 V_A をサンプリングする。

サンプリングパルスの立ち上がりとトリガ信号間の時 間差 T_{delay} はランプ波スルーレート V_R と DAC からの 参照電圧 V_{DAC1}に依存し、原理的には V_{DAC1} を変化さ せることでトリガ以降の任意の時点の信号をサンプリン グすることができる。サンプリング動作を終了する度に V_{DAC1}を単位ステップで階段状に増加させるので、サン プリング時点が波形の時間の推移に従うことになり、こ の方式はシーケンシャル・サンプリングと呼ばれている。

シーケンシャル・サンプリングでのサンプリングパル ス生成の設計回路を図8に示す。この回路をランプ波発 生器と外部から制御される DAC1、コンパレータから構 成した。初期状態はSR-FFのリセット信号をONにする ことで、電E $V_R = 0$ とする。トリガ信号の入力により、 電流 I_1 が容量 C_1 に流れ電荷を蓄積してランプ波を発生 させ、DAC1の出力 V_{DAC1} と比較する。図9にサンプリ ングパルス生成回路の信号波形を示す。また DAC1 はセ グメント型とし、一度逐次比較近似 ADC の動作が終了す ると次の電圧レベルに 1LSB 増加するように外部 CPUか ら制御する。

3.3 逐次比較近似 ADC 部

図4の中に示される上位ビット生成用逐次比較近似ADC (successive approximation type A-D convertor)を、コ ンパレータ、逐次比較近似レジスタ(SAR: Successive Approximation Register)、*n*bit の DAC2、基準電圧、差動 アンプ、T/H 回路から構成する。図 10、11 に動作原理を 示す。

図 10 に示すように、逐次比較近似 ADC は天秤のよう に動作する。ここで重り A は入力信号 V_{in} (繰り返し信 号)の瞬時値で、重り B は DAC2 の出力信号 V_{DAC2} で ある。遂次比較近似したためしの重り B を天秤(差動ア ンプ)に架けて比較を行い、最終的に重り A と重り B が (ほぼ)等しくなるように動作する。

すなわち、逐次比較近似 ADC は SAR に連動した DAC2 の出力電圧 V_{DAC2} が入力信号 V_{in} (繰り返し信号)の瞬時値に一致するまで比較していく帰還比較方式として動 作する。(図 11) まず *MSB* だけを 1 にし(残りは 0)入 力信号と比較する。入力信号の方が小さければ *MSB* = 0 が、大きければ *MSB* = 1 が決定できる。次に *MSB* よ り一つ小さい位の bit を 1 にして同様に決定する。この動 作を *n*bit 回繰り返し、最後に *LSB* を決定すれば変換終 了となる。このときの DAC2 のデジタル・データが AD 変換結果となる。

また図6に示すように差動アンプは逐次比較近似ADC のAD変換中はコンパレータの前段のプリアンプとして、 変換後は線形なアンプとして動作する。すなわち変換が 終了した時点で差動アンプはプラス側とマイナス側の入 力はほぼ等しくなり線形部分の良い領域で動作する。遂 次比較近似の終了時点の差動アンプの出力をバッファを 通して外部に出力し外部でAD変換すれば下位ビットの 情報が得られる。

3.4 差動アンプ、マスター・スレーブ T/H 回路

被測定回路と測定回路(提案サンプラ回路)は同一チッ プ上、すなわち同じプロセス技術で作られる。被測定回 路が微細 CMOS で実現されより高周波信号を扱えば、サ ンプラ回路も微細 CMOS で実現されるので広帯域化しや すくなる。CMOS プロセスとサンプラ回路の帯域につい て検討する。

NMOS トランジスタの遮断周波数 *f*_T は飽和領域のと き次のように表される。[10]

$$f_T = \frac{3\mu}{4\pi \cdot L^2} (V_{GS} - V_{thn}).$$
 (1)

また、図 12 の構成で $V_{GS} = 1.7V$ ($V_{GS} - V_{thn} = 1.0V$) のとき BSIM3v3 モデルを用いた SPICE シミュレーショ ンで f_T は次のように得られた。

(i) $L = 1.40 \mu m, V_{DS} = 3.3V$ のとき $f_T = 2.1 GHz,$

(ii) $L = 0.70\mu m$, $V_{DS} = 3.3V$ のとき $f_T = 6.7GHz$, (iii) $L = 0.35\mu m$, $V_{DS} = 3.3V$ のとき $f_T = 18.5GHz$, (iv) $L = 0.25\mu m$, $V_{DS} = 2.5V$ のとき $f_T = 27.7GHz$. (v) $L = 0.18\mu m$, $V_{DS} = 1.8V$ のとき $f_T = 36.4GHz$. f_T は L が 1/2 になると、式 (1) からは 4 倍になるはずだ が、上記 SPICE シミュレーションからは 3 倍程度である。

図 13 (a) に差動アンプを示す。差動アンプのゲイン特性は図 13(b) に示すように一次系近似ではゲイン・帯域幅 積一定の関係になる。図 14 に $L = 0.35 \mu m$, $W = 15 \mu m$, $I_{amp} = 1mA$ のときの差動アンプのゲイン特性のシミュレーション結果を示す。これらから CMOS のチャネル長 L、遮断周波数 f_T 、差動アンプのゲイン・帯域の関係の 把握ができる。

図 15 に T/H 回路とその入出力波形を示す。提案回路 では差動アンプの後段に図 15(b) に示すような T/H 回路 を 2 段直列接続したマスター・スレーブ型を用いる。そこ ではマスターがトラック・モード時にはスレーブがホール ド・モード状態、またマスターがホールド・モード時には スレーブがトラック・モード状態である。このようにする ことで後段回路(チップ外の ADC 等)に高速・高周波信 号が流れないようにする。2 つの T/H 回路を動作させる クロック (*CLK*, *CLK*) は同時に ON 状態(Track 状態) にならないようにするためノンオーバーラップ・クロック を用いる。

サンプラの帯域は差動アンプの帯域とマスター T/H回 路のスイッチオン抵抗・ホールド容量で決まる。

IV. まとめ

高周波アナログ LSI のテスト容易化のために、出力ピン前段に広帯域・高精度サンプラ回路を設けることを提 案し、その構成法を示した。今後以下のことを行う。

(i) 上位ビット生成用逐次近似 ADC 間と T/H 回路出力を 入力とする下位ビット生成用 ADC 間のキャリブレーショ ン法の開発。

(ii) テスト容易化用サンプラ回路の被測定チップとLSIテ スタへの回路の割り振りの検討を行う。図16に示すよう にできるだけLSIテスタ側に機能を持たせ、BIST回路は 最小限がよい。

(iii) このサンプラ回路をアナログ IP として実現し、高周 波アナログ混載 LSI に組み込みテスト容易化を図る。

謝辞 等価時間サンプリング技術、トリガ回路に関してご 教示いただいた小林謙介氏に感謝の意を表します。

参考文献

 M. L. Bushnell and V. D. Agrawal, Essentials of Electronic Testing for Digital, Memory and Mixed-Signal VLSI Circuits, Kluwer Academic Publishers, Boston (2000).

- [2] M. M. Hafed, N. Abaskharoun, and G. W. Roberts, "A 4-GHz Effective Sample Rate Integrated Test Core for Analog and Mixed-Signal Circuit", *IEEE Journal of Solid-State Circuits*, vol.37, pp.499-514 (April 2002).
- [3] B. Provost, and E. Sanchez-Sinencio, "On-Chip Ramp Generator for Mixed-Signal BIST and ADC Self-Test", *IEEE Journal of Solid-State Circuits*, vol.38, no.2, pp.263-273 (Feb. 2003).
- [4] G. W. Roberts, "Test Cores for On-Chip Analog Measurement", *Custom Integrated Circuits Conference*, Educational Session, San Jose (Sept. 2003).
- [5] M. Kimura, A. Minegishi, K. Kobayashi, and H. Kobayashi, "A New Coherent Sampling System with a Triggered Time Interpolation", *IEICE Trans. on Fundamentals*, E84-A, pp.713-719 (March 2001).
- [6] M. Kimura, K. Kobayashi, and H. Kobayashi, "A Quasi-Coherent Sampling Method for Wideband Data Acquisition," *IEICE Trans. on Fundamentals*, vol.E85-A, no.4, pp.757-763 (April 2002).
- [7] M. Kahrs, "50 Years of RF and Microwave Sampling", *IEEE Transactions on Microwave Theory and Tech*niques, vol.51, no.6, pp.1787-1805 (June 2003).
- [8] M. Takamiya, M. Mizuno, and K. Nakamura, "An On-chip 100GHz-Sampling Rate 8-channel Sampling Oscilloscope with Embedded Sampling Clock Generator", *IEEE International Solid-State Circuits Conference*, pp.182-183, San Francisco (Feb. 2002).
- [9] R. Ho, et al., "Application of On-Chip Samplers for Test and Measurement of Integrated Circuits", *Digest* of Symp. on VLSI Circuits, pp.138-139 (June 1998).
- [10] R. J. Baker, H. W. Li, D. E. Boyce, CMOS: Circuit Design, Layout, and Simulation, IEEE Press (1997).
- [11] 小林謙介氏との私信.

付録 1: 等価時間サンプリング

等価時間サンプリングは、サンプリングクロック周期 より細かな時間で繰り返し波形を捉える方法で、ナイキス ト周波数に依存せず低サンプリング周波数で高周波入力 を扱うことができ、広帯域で高時間分解能を実現する方 法として知られている。繰り返し生起する数多くの信号 波形から所望する数の波形瞬時値をサンプリングしてレ プリカを作り、あたかも一つの波形の如くに再現する(図 3)。等価時間サンプリング技術は、シーケンシャル・サ ンプリング、ランダム・サンプリング及びコヒーレント・ サンプリング技術の3方式に分類され、それぞれ長所と 短所がある。[5, 6, 7] シーケンシャル・サンプリングと ランダム・サンプリングはトリガ信号を用いるので繰り 返し信号が一定時間毎に現れなくてもよい(図3)。一方、 コヒーレント・サンプリングは繰り返し信号が一定時間 毎に現れる場合にのみ適用できる。

シーケンシャル・サンプリングはトリガ時点を基準に一 定時間間隔(例えば図3のように Δt, 2Δt, 3Δt, ...)でサ ンプリングパルスを発生させる方法であるため、高速掃 引時もデータ収録速度が低下せず、市販の広帯域サンプ リングオシロスコープに採用されている。また繰り返し 信号からトリガを取り出す(トリガリング)により、ジッ タレス機能を持つ。しかし自走するクロックを持たない ため、トリガ時刻以前の波形をサンプルするには(すな わちプリトリガ機能を持たせるためには)アナログ遅延 線が必要となり、この遅延線がシステムの広帯域化を制 限する。

ここでは3つの方式の中でシーケンシャル・サンプリ ングをアナログ BIST 回路に用いる。比較的簡単な回路 でジッタレス・高効率で波形を収録でき、今回の目的には プルトリガ機能は必須ではなく上述のアナログ遅延線が 不要のためである。

付録 2:トリガ回路部 この節は [11] による。

図17にアナログオシロスコープ、サンプリング・オシ ロスコープ等で用いられるトリガ回路の構成とタイミン グ・チャートを示す。オシロスコープでのトリガ回路は ECL のラインレシーバと DFF 及び MUX(スイッチ) で構 成でき、入力信号のレベル検出と傾き選択を行い、入力 信号がその条件を満たすとステップ状の信号を発生する。 トリガ入力の繰り返し周波数が高ければ、「delay」を用い ずに、「ホールドオフ解除後の2発目のトリガ入力」で同 期出力を得る構成も可能である。(delay 挿入は、一つの トランジションで二つの DFF を叩くためである。) 破 壊保護と飽和特性を良くする為、入力段にはダイオード クランプ/リミッタを挿入する。また図 17 中の同期回路 (synchronization circuit)は、波形の整形後のトリガ信号 と、そのトリガ信号の受け入れを開始する非同期関係に あるホールドオフ解除信号間で、ジッタを発生させない ようにする回路である。

図 1: 携帯電話の送受信部テストのためのループバック法.(a) 携帯電話の送信部(TX)と受信部(RX).(b)高価な測定器によ る測定.(c)ループバック法.送信部出力を受信部に入力する. (d)ループバック法では送信部出力からの不要スプリアス成分 を評価できないので、結局スペクトラム・アナライザ等に接続 して送信部が規格を満たすかを評価する必要がある.

図 2: (a) チップ外にサンプラを設ける場合.寄生容量により被 測定信号波形が劣化する.(b) チップ内にサンプラを設ける場合. 広帯域・高精度・低電圧 CMOS サンプラ回路の実現が難しい.

図 3: 繰り返し入力波形に対する等価時間サンプリングの原理. トリガ信号(繰り返し入力信号の起点)からサンプリング時刻ま での時間の情報からサンプル値データから波形を再合成できる.

図 4: 提案するアナログ BIST 回路ブロック図. A ブロック: 繰り返し信号を発生する被測定内部回路. B ブロック: シーケ ンシャル・サンプリング用クロック発生回路. C ブロック: 上 位ビット用遂次比較近似 ADC. D ブロック: 下位ビット用マス ター・スレーブ T/H 回路.

図 5: (a) 通常の遂次比較近似 ADC の場合. (繰り返しでない) 任意の入力信号が入ってくるので A/D 変換動作中入力信号が変 動しないように入力信号を T/H 回路を用いてサンプルホールド しなければならない.(b) 提案回路内で用いている遂次比較近似 ADC の場合. 入力信号が繰り返し波形であるためトリガからの 適当なタイミングでサンプリングすれば同じ値の入力波形と基 準電圧 V, が比較できるので前段に T/H 回路が不要になる.

図 6: 提案するサンプラ回路の実現法の設計思想の説明図.

図 7: シーケンシャルサンプリングのためのサンプリング・パル ス発生.トリガ信号が入るとランプ波が生成され、DAC 出力か らの基準信号 (V_{DAC1})と比較される。両者が等しくなった時点 (トリガ後 T_{delay})でサンプリング・パルスを発生する。V_{DAC1} を調整することで T_{delay} を調整できる。

図 8: サンプリングパルス生成回路. 最初に外部 CPU による Reset1 信号で C_1 の電荷をゼロ (ホールドオフ) にする。次に Trigger 信号が入ると Step 信号が 1 になり電流源 I_1 が C_1 に 接続されランプ波が発生する。DAC1 入力は外部(CPU 等)で 設定され、遂次比較近似 ADC の動作が終了したら 1LSB 増加 させる。

図 9: サンプリングパルス生成回路 (図 8) での信号波形.

図 10: 天秤の動作を用いた遂次比較近似 ADC の動作説明.

図 11: 3bit の場合の遂次比較近似 ADC の動作原理. (a) DAC2 の出力電圧のタイムチャート. (b) デジタル・データの移り変 わり. (c) 入力信号 (繰り返し信号)の参照瞬時値 V_r の算出ま での差動アンプのアナログ出力の動作. V_{FS} は DAC2 のフルス ケール電圧(基準電圧)である.

図 12: (a) NMOS の遮断周波数 f_T を SPICE シミュレーションから得る. (b) $\log(i_d/i_a) = 0$ のときの周波数が f_T .

図 13: (a) 差動アンプ. (b) 差動アンプの利得・帯域幅.

図 14: 差動アンプ(図 12 (a)) W=15µm、L=0.35µm、I_{amp} = 1mA で、R を 1K~5K まで変化させた時の利得のシミュレー ション結果. 縦軸は (dB ではなく)リニアである.

図 15: Track/Hold 回路とその入出力波形. (a) 1段 T/H 回路. 高速・高周波信号が後段回路(チップ外の ADC等) に流れてしまう. (b) マスター・スレーブ型 T/H 回路. 後段回路 への出力は DC 信号.

図 16: テスト容易化用サンプラ回路の被測定チップと LSI テ スタへの回路の割り振り.

図 17: アナログオシロスコープ、サンプリング・オシロスコー プ等で用いられるトリガ回路の構成とタイミング・チャート.ト リガ回路は入力信号のレベル検出と傾き選択を行い、入力信号 がその条件を満たすとステップ状の信号を発生する. [11]