タイムデジタイザを用いた非同期サンプリング AD変換器と信号処理

Nonuniform-Sampling ADC Using Time-to-Digital Converter and its Signal Processing

 清水 一也 元澤 篤史 小室 貴紀† 林 海軍 小林 春夫
 群馬大学工学部電気電子工学科
 〒 376-8515 群馬県桐生市天神町 1-5-1 Tel: 0277-30-1788 Fax: 0277-30-1707
 e-mail:{a2e046,a2e083}@ug.eng.gunma-u.ac.jp,m04e674@gs.eng.gunma-u.ac.jp, k_haruo@el.gunma-u.ac.jp
 † アジレント・テクノロジー・インターナショナル(株)
 〒 192-8510 東京都八王子市高倉町 9-1 e-mail:taknori_komuro@agilent.com

Kazuya Shimizu Atushi Motozawa Takanori Komuro† HaiJun Lin Haruo Kobayashi Electronic Engineering Department, Faculty of Engineering, Gunma University, † Agilent Technologies International Japan, Ltd.

要約- この論文では、微細 CMOS プロセスでの実現に 適した高速 AD 変換方式を提案する。信号レベルを時間 領域で測定するタイムデジタイザ回路を用いて非同期サ ンプリングで AD 変換を行う。入力信号とサンプリング・ クロックに同期した基準正弦波信号をコンパレータ回路 で比較し、サンプリングクロックエッジからコンパレー タ出力の0から1または1から0へ遷移するまでの時間 をタイムデジタイザ回路を用いて測定する。大部分の回 路が低電圧動作可能なデジタル回路で構成できるため微 細CMOS での実現に適しており、タイムデジタイザ回 路は数ピコ秒の分解能が実現可能である。また、LSI テス タのアプリケーションの際には信号のパワースペクトラ ムを高速に求める必要があるので、非同期サンプリング されたデジタルデータからパワースペクトラムの計算ア ルゴリズムを検討した。

 $\texttt{+-7-k:} \quad \text{ADC, Nonuniform Sampling, Nonuniform} \\ \text{DFT, Time-to-Digital Converter, ATE}$

I. 研究目的

近年のプロセスの微細化、設計ツールの発達・自動化 により、LSIの超大規模化・超微細化が進むにつれ、高性 能・多機能なシステムLSIが数多く開発されるようにな り、システムLSIのテスト開発・評価は、高い技術力が 要求されるようになった。また対応するテストシステム、 関連装置等の高価格化、テスト開発の長期化等によるテ ストコストの増大が、顕著化している。その結果、LSIの テストコストが製造コストを超える勢いで増加しており、 テストの品質も低下しているため、LSIテストは半導体 産業の発展を阻害する要因になりかねない。この論文で は、LSI テスタ (Automatic Test Equipment: ATE)用の 微細 CMOS での実現に適したタイムデジタイザ (Timeto-Digital Converter: TDC)を用いた非同期サンプリン グAD変換器アーキテクチャを提案する。またその非同期 サンプリング AD 変換器からのデジタル出力はサンプリ ング間隔が一様でない (Nonuniform Sampling)データで あるので、パワースペクトラムを求めるため従来の FFT アルゴリズムを用いることはできない。LSI テスタアプリ ケーションではパワースペクトラムを求める必要があり、 その計算時間は"テストコスト"となってしまう。そこで 出力パワースペクトラムを高速で計算するアルゴリズム を検討した。

II. CMOS 微細化に伴う従来の AD 変換器の問題点

連続したアナログ信号を離散的なデジタル信号に変換 する AD 変換器は図1のように構成される。アナログ信 号はエイリアス防止用の前置フィルタ (LPF) を通り、サ ンプルホールド (S/H) 回路で標本化され量子化、符号化 という流れでデジタル信号として出力される。しかし図1 に示す様に、従来の AD 変換器の構成はアナログ回路が 多用されている。CMOS 微細化に伴い素子ばらつきが増 大し、電源電圧の低下による SNR 劣化などアナログ回路 の性能はデジタル回路はど微細化の恩恵を受けない。一 方デジタル回路は微細化が進めばチップ面積を縮小する ことができ、また高速に低消費電力で動作するので、微 細化のトレンドに合っている。さらに、電源電圧の低下 によりアナログ信号での電圧分解能を出すことが難しく なると考えられる。しかし、微細化が進めば MOS トラン ジスタのスイッチング速度が高速になるため、デジタル 信号端遷移による時間分解能を出す方が高精度になると 考えられる。

そこで、我々はデジタルリッチ、アナログ最小の AD 変 換器としてタイムデジタイザ回路を用いた AD 変換器を 提案する (図 2)。アナログ回路部は低電圧動作可能な簡単 な回路を用いているだけであるので、CMOS 微細化が進 んでもその部分の設計変更が少なくてすむ。またデジタ ル回路部はより高速・低消費電力になるので微細化の恩 恵を大きく受けることができ、微細 CMOS プロセスに適 した方式である。

図 1: 従来型 AD 変換器.

図 2: 提案 AD 変換器.

III. 提案 AD 変換器の構成と動作

A. 提案 AD 変換器の構成

図 2 に示すようにアナログ入力 A_{in} を入力とし、デジ タル信号 D_{out} を出力とする。クロック CLK に同期した 基準正弦波 V_{ref}、(クロック同期でない) コンパレータ回 路、クロック CLK の立ち上がりエッジからコンパレー タ出力が 0 から 1 または 1 から 0 までに遷移するまでの 時間を測定しデジタル出力 T_{out} を求める TDC 回路から 構成される。

- 高速高精度なサンプルホールド回路が不要である。
- TDC 回路は大部分をデジタル回路で実現でき、 CMOS IC 内で現在数十ピコ秒オーダーの分解能 のものが実現できている。CMOS 微細化に伴いよ り高分解能のものが実現できる。また我々は電子計 測器研究者・メーカーとしてタイムインターバルア ナライザ等時間を計測する技術に取り組んできてお り、これまでの技術的蓄積を利用できる。

- クロックと同期した基準正弦波の発生回路ははたと えば大部分がデジタル回路であるデルタシグマ DA 変調器と簡単なアナログフィルタとの組み合わせ等 で実現できる。
- コンパレータ回路は差動アンプ、オペアンプをオー プンループで使用する等、比較的容易に実現でき、 クロック不要で低電圧動作可能である。

B. 提案 AD 変換器の動作

AD 変換器の入力レンジを -Aから Aとする。基準信号の正弦波 $V_{ref}(t)$ の振幅は A で、周期はクロック CLK周期と同じ T とし、またクロック CLK の立ち上がりエッジで $V_{ref}(t)$ の位相は 0 とする。すなわち

$$V_{ref}(t) = A \sin\left(2\pi \frac{t}{T}\right).$$
 (1)

入力アナログ信号 $A_{in}(t)$ と基準信号の正弦波 $V_{ref}(t)$ を コンパレータ回路で比較する。コンパレータ回路の出力 波形は図 4 のように、high か low の矩形波が得られる。 クロック *CLK* の立ち上がりエッジから(クロック周期 T 内に最初に現れた)この high と low の切り替わる瞬間の 時間をタイムデジタイザ回路により測定する。この時間 と基準信号である正弦波から、その時間における入力信 号の振幅を求めることができる。たとえばアナログ入力 $A_{in}(t)$ が一定値 $a(-A \le a \le A)$ の場合、

$$\begin{split} A\sin\left(2\pi\frac{nT+t_n}{T}\right) &= a,\\ (0 \leq t_n < T, \quad n = 0, 1, 2, 3, \ldots).\\ & & & & & \text{theorem } t_n = T\arcsin\left(\frac{a}{A}\right) \end{split}$$

となり、 $T_{out}(n)$ は t_n のデジタル値となる。 $A_{in}(t)$ がDC 信号の場合は high と low が切り替わる時間は等間隔にな り、同期サンプリング (Uniform Sampling) となる。しか し $A_{in}(t)$ が時間的に変化する一般の信号の場合は $T_{out}(n)$ はn毎に異なる非同期サンプリングとなる。

図 5 のように基準正弦波と入力信号のクロス点までの 時間が分かれば基準正弦波の式から入力信号の振幅を求 めることができる。すなわち一般的に記述すると、 $nT \leq t < (n+1)T$ において

$$\begin{split} A\sin\left(2\pi\frac{t_n}{T}\right) &= A_{in}(t) \\ \mbox{th} \ t_n &= T \arcsin\left(\frac{A_{in}(t)}{A}\right) \end{split}$$

 t_n をデジタル化したものが TDC の出力 $T_{out}(n)$ であり、 AD 変換器のデジタル出力 $D_{out}(n)$ は

$$D_{out}(n) = A \sin\left(2\pi \frac{T_{out}(n)}{T}\right)$$

となる。ただし $D_{out}(n)$ は $A_{in}(t)$ を(通常の同期型AD 変換器のように時刻nTでサンプリングした値ではなく) 時刻 $nT+T_{out}(n)$ でサンプリングしたデジタル値である。

図 3: (上) 入力アナログ信号波形 A_{in}(t). (下) 正弦波の基準信 号波形 V_{ref}(t).

図 4: (上) 入力信号と基準正弦波信号の波形.(下) 基準クロッ ク CLK とタイムデジタイザの出力 T_{out}.

(注) 非同期サンプリングのエイリアシング

非同期サンプリングの場合でも同期サンプリングの場 合と同様にエイリアシングの影響を避けるために、少なく とも入力周波数の2倍以上でサンプリングしなければな らない。(入力周波数 fin はサンプリング周波数1/T の2 分の1未満に制限しなければならないので提案 ADC でも 前段にアンチ・エイリアシング・フィルタが必要である。)

図 5: 提案 AD 変換器のサンプリングの原理.

図 6: インバータによるディレイライン.

IV. タイムデジタイザ回路

2つのパルス間の正確な時間間隔を測る方法はたくさ んあり、たとえばその専用電子計測器はタイムインター バルアナライザと呼ばれ、また多くのデジタル・オシロス コープでもその機能を有している。これを CMOS IC 内 に実現するタイムデジタイザ回路 (TDC) は、カウンター と複数のクロックにディレイを作ることにより時間間隔 を測定してデジタル値で出力し、20~30[ps]の分解能・精 度のものがすでに実現されている。この非常に高い分解 能は、外部の基準クロックサイクルを等しいサイズのディ レイラインを持った数百のクロックに分けることによって 達成される。ディレイが一定であるディレイラインは時 間を連続的に構成する。時間間隔の測定は、タイミング パルスが起こったときにディレイラインの状態をレジス タに書き込み、次の状態との差を計算することによって なされる。[1]

まず基準クロックによって大まかな時間間隔を推定し、 図6のようにインバータを用い、そのインバータ遅延に より、非常に分解能の高いディレイラインを構成し、時間 間隔を測定する。図7のように、フリップフロップのク ロック部にコンパレータ出力を、ディレイラインに基準 クロックを入力し、インバータの接続点の中間タップを フリップフロップに入力し、そのフリップフロップ出力に よりコンパレータ出力タイミングを高時間分解能で検出 する。

図 7: 高時間分解能でコンパレータ出力タイミング検出.

V. 非同期サンプリングデータの信号処理

提案 AD 変換器のデジタル出力データは、アナログ入 力を等時間間隔でサンプリングしたものではなく、非同 期サンプリング (Nonuniform Sampling) データである。 LSI テスタでのアプリケーションではパワースペクトラ ムを得る必要があるので、この非一様サンプリングデー タから <u>高速</u> でパワースペクトラムを計算するアルゴリズ ムが必要である。(計算時間は"LSI のテストコスト"に直 結するので、提案 AD 変換器単体で有効であってもその パワースペクトラムを計算するアルゴリズムが複雑にな り計算時間が膨大になってしまっては提案 AD 変換器は LSI テスタに使用することはできない。)

図2のフィルタ部分に LPF を用いることにより、リア ルタイムサンプリングまたは、オーバーサンプリングに よる信号処理となり、フィルタに BPF を用いると、入力 信号の周波数帯域が既知となるために、等価時間サンプ リングとして入力信号波形を再構成することができると 考えられる。

ここで、非同期サンプリングデータからそのパワース ペクトラムを得るのは次の2つの方法が考えられるので、 それぞれについて検討した。

- 非同期サンプリングデータを時間領域で補間を行い、同期サンプリングデータを得る。その後通常の (同期サンプリングデータに対する) FFT アルゴリズムを用いてパワースペクトラムを得る。
- 2. 非同期サンプリングデータを直接離散フーリエ変換

を行いパワースペクトラムを得る。

図 8: 概念図 (左) 非同期データを補間して FFT を行なう方法 (右) 非同期データを直接 DFT を行なう方法.

VI. 時間領域での同期サンプリングデータへの変換

Frequency (Fin/Fs)

最初に非同期サンプリングしたデータを時間領域で多 項式を用いて補間し、同期サンプリングデータを得るア ルゴリズムの考察を行った。(その同期サンプリングデー タから通常の FFT によりパワースペクトラムを得ること ができる。)

多項式補間

-50

多項式補間は、相異なるn個の点 x₀, x1, ..., x_{n-1} が与 えられたときに、n-1 次の多項式 P_{n-1}(x) が、

$$P_{n-1}(x_i) = f(x_i), i = 0, 1, \dots, n-1.$$
(2)

を満たすとき、 $P_{n-1}(x)$ をf(x)の補間多項式といい、 $x_0, x_1, ..., x_{n-1}$ を補間点という。上式が補間条件となる。 この補間多項式の選び方により様々な補間が可能である。 我々は線形補間、最近傍点による補間、キュービック補 間、キュービックスプライン補間の検討を行い、シミュ レーションによりキュービックスプライン補間が最も精 度が良いという結果を得た。以下キュービックスプライン 補間について記す。

キュービックスプライン補間

キュービックスプライン補間では、各点を結ぶ曲線に おいて、曲げによる変形のポテンシャルエネルギーが最 小になるような滑らかな曲線をとる。以下にその補間関 数の計算法を簡単に述べる。[7]

与えられた n 個の点列 $(x_i, x_1, \dots, x_{n-1})$ を通り、区間 (x_i, x_{i+1}) $(i = 0, 1, \dots, n-2)$ の3次スプライン曲線 (図 9)を決定するため次の3つの条件を与える。

 (i) 各区間 (x_i, x_{i+1}) で 3 次スプライン補間関数 S(x) は次 式である。

 $S_i(x) = a_i(x - x_i)^3 + b_i(x - x_i)^2 + c_i(x - x_i) + d_i.$ (3)

- (ii) 各点 x_i で S''(x), S'(x), S(x) の値は連続であり、 $S(x_i) = f_i$ である。
- (iii) 両端 x₀, x_{n-1} では別途与えられる端末条件を満たす。

これより、補間関数の未知係数を求める。そのため式 (3) においての導関数 S''(x), S'(x), S(x) を用いて計算す る。しかし、このままだと未知数 n 個に対し、式が n - 2 個であるので解くためには条件式が 2 つ不足する。

不足する条件式を補い3次スプライン関数を一意に決 めるには、人為的に端末条件を与える。このような条件 として一般的に用いられるのは以下の3種類である。

(i) 自然条件

両端点における2次微分係数を0とする。

(ii) 固定条件

両端点における1次微分係数をあたえる。

(ii) 周期条件

両端点における1次と2次の微分係数がそれぞれ等 しい。

これらの条件により未知数と式が一致するので補間関 数を示すことができる。

VIII. 非同期サンプリング離散フーリエ変換

次に非同期データを直接フーリエ変換するアルゴリズ ムを検討した。 離散フーリエ変換の式は、

$$X(k) = \sum_{n=0}^{N-1} x(n) \exp(-j2\pi kn/N).$$
(4)

ここで、 $W_N = \exp(-j \frac{N}{2\pi})$ と定義すると、行列では

$$\boldsymbol{W} = \begin{pmatrix} W^{0} & W^{0} & \cdots & W^{0} \\ W^{0} & W^{1} & \cdots & W^{N-1} \\ W^{0} & W^{2} & \cdots & W^{2(N-1)} \\ \vdots & \vdots & \vdots & \vdots \\ W^{0} & W^{N-1} & \cdots & W^{(N-1)(N-1)} \end{pmatrix}$$
(5)

となり、離散フーリエ変換の式は、

$$X(k) = \sum_{n=0}^{N-1} x(n) W_N^{kn}.$$
 (6)

とおける。 $W_{N}^{kn} = \exp(-j2\pi kn/N)$ は複素平面上の単位 円の円周上を $2\pi/N$ ごとに動く点を表し、回転因子という。サンプリングが等間隔である同期サンプリングの場 合は周期 T が一定であるためこの式でよい。しかし、非 同期サンプリングの場合、サンプリング周期が異なるため、回転因子は次式のようになる。

$$W_N^{kn} = \exp\left(-j2\pi kn\frac{T_n}{T_1 + T_2 + \dots + T_N}\right) \quad (7)$$

つまり、回転角はそれぞれのサンプリング周期で重み 付けをする。[2],[3],[4] 非同期にサンプリングされたデー タの離散フーリエ変換は以下のようになる。[6]

$$X_D(f) = \sum_{k=1}^N \exp\left(-j2\pi kn\frac{T_n}{\sum_{k=1}^N T_k}\right) \tag{8}$$

VII. シミュレーション結果

非同期データを信号補間を行って同期データとして従 来のFFT する方法と、非同期データを直接 DFT する方 法について比較した。シミュレーション条件として、基準 正弦波の周波数を 1.02[kHz]、入力周波数を 341[Hz]、最 大サンプリング周波数が 2.72[kHz]、最小サンプリング周 波数が 682[Hz]、補間周波数を 1.02[kHz] としたときに得 られた波形が図 10、図 11 である。信号のパワーを比較す ると、信号補間を行った場合が 24.38[dB] で、直接 DFT を行った場合が 23.92[dB] となり、また信号補間をした場 合の方がノイズ成分も少ないため補間を行ったほうが良 い結果が得られた。

次に、このときの計算時間についても比較を行なった (図 13)。直接 DFT を行なう方が、補間して FFT を行な うより数十倍時間がかかるという結果が得られた。

VIII. まとめと今後の課題

LSI テスタ用の微細 CMOS での実現に適した AD 変換 器の構成を提案した。(別の論文で報告予定であるが、実 際のハードウェアとしてプロトタイプを試作し動作を確 認している。)出力は非同期サンプリング・デジタルデー タになるのでそのパワースペクトラムを高速で計算する アルゴリズムを検討し、現在さらなる高速・高精度化を 図っている。

謝辞 基本コンセプトに関して議論に加わってくれた Agilent Technologies 社の Jochen Rivoir 氏に感謝する。

参考文献

- J. Jansson, A. Mantyniemi, J. Kostamovaara, "A Delay Line Based CMOS Time Digitizer IC with 13 ps Single-shot Precision", *IEEE International Symposium* on Circuits and Systems, pp.4269-4272, Kobe (2005).
- [2] F. Marvasti, "Application of Nonuniform Sampling to Nonlinear Modulation, A/D and D/A Techniques", Nonuniform Sampling Theory and Practise, Kluwer Academic/Plenum Publishers, New York, pp.647-687(2001).
- [3] J. J. Benedetto, P. J. S. G. Ferreira, "Modern Sampling Theory: Mathematics and Applications", Birkhauser Boston (2001).
- [4] S.Bagchi,S.K.Mitra, "The Nonuniform Discrete Fourier Transform and its Applications in Signal Processing", Kluwer Academic Publishers (1999).
- [5] http://www.edi.lv/dasp-web/apl_g/SAMPLING.PDF
- $[6] http://www.eurodasp.com/eurodasp.com/sc_onweb.pdf$
- [7] 峰村吉泰、Cと Java で学ぶ数値シミュレーション入門、森北出版 (1999).

図 10: (上)基準正弦波と入力信号の波形(下)基準クロック とコンパレータ出力の波形.

図 11: (上) 非同期データを時間領域で信号補間を行い従来の FFT をしたときの波形(下) 非同期データを直接 DFT したと きの波形.

図 12: 補間法におけるデータ点数に対する計算時間.

図 13: 非同期データを直接 DFT した場合と補間して FFT した場合の計算時間の比較.