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High-Speed Continuous-Time Subsampling Bandpass ∆Σ AD
Modulator Architecture Employing Radio Frequency DAC

Masafumi UEMORI†, Nonmember, Haruo KOBAYASHI†a), Member, Tomonari ICHIKAWA†, Nonmember,
Atsushi WADA††, Koichiro MASHIKO†††, Toshiro TSUKADA†††, and Masao HOTTA††††, Members

SUMMARY This paper proposes a continuous-time bandpass ∆ΣAD
modulator architecture which performs high-accuracy AD conversion of
high frequency analog signals and can be used for next-generation radio
systems. We use an RF DAC inside the modulator to enable subsampling
and also to make the SNDR of the continuous-time modulator insensitive
to DAC sampling clock jitter. We have confirmed that this is the case by
MATLAB simulation. We have also extended our modulator to multi-bit
structures and show that this alleviates excess loop delay problems.
key words: continuous-time, subsampling, bandpass, ∆Σ modulator, RF
DAC, jitter

1. Introduction

Currently, research into bandpass ∆ΣAD modulators is very
active, because they are expected to be capable of perform-
ing high-accuracy AD conversion of high-frequency nar-
rowband signals with low power consumption [1]–[9] and so
find wide application to wireless LANs and cellular phones.
In this paper, we propose using a continuous-time subsam-
pling bandpass ∆ΣAD modulator whose internal DAC is in-
sensitive to clock jitter, for direct AD conversion of RF sig-
nals. Such a modulator can eliminate frequency downcon-
version circuitry, and help realize next-generation digital-
rich analog-minimum receiver front-ends (Fig. 1). We will
also discuss the DAC circuit implementation, and exten-
sion to multibit modulator architectures which reduce ex-
cess loop delay problems.

Note that the proposed bandpass ∆ΣAD modulator can
perform AD conversion for any input signal with arbitrary
modulation if it is within the specified bandwidth and within
the input range (which is the same as other ADCs).

2. Discrete-Time vs. Continuous-Time Circuits

So far, most ∆ΣAD modulators have been realized with
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Fig. 1 Analog front-end of the targeted digital-rich analog-minimum re-
ceiver architecture.

Fig. 2 Discrete-time circuit (left) and continuous-time circuit (right).

Fig. 3 For given sampling clock frequency, subsampling enables three-
times higher center frequencies to be handled compared with conventional
Nyquist sampling.

discrete-time (switched-capacitor) circuits because it is rel-
atively easy to realize high accuracy with them (Fig. 2).
Currently there is active research into continuous-time cir-
cuit implementations, to obtain higher-speed operation with
lower power. However in continuous-time modulators,
clock jitter effects on the internal DAC degrade the accu-
racy of the whole modulator, although jitter effects on the
internal ADC are noise-shaped. So we consider here how
to overcome DAC jitter effects and also how to handle even
higher-frequency signals with a continuous-time bandpass
modulator (Fig. 3).

3. Nyquist Sampling vs. Subsampling

In most cases (regardless of discrete- or continuous-time
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Fig. 4 Nyquist sampling (left) and subsampling (right).

circuit implementation), the sampling clock frequency of
bandpass ∆ΣAD modulators ( fs) is four times the center fre-
quency of the input signal band ( fc) ( fs = 4 fc); one reason
is ease of implementation of the digital filter that follows the
modulator [10]. In other words, the center frequency of the
signal band is one-fourth of the clock frequency at which the
internal ADC and DAC operate ( fc = fs/4); this is called as
Nyquist sampling, and maximum signal bandwidth is from
0 to ( fs/2) (Fig. 4). Therefore, to handle high frequency in-
put signals, the sampling clock frequency of the modulator
has to be even higher, which makes the design of the internal
ADC and DAC difficult.

To overcome this problem,“analog subsampling tech-
niques” may be applied (Fig. 4), using a sampling frequency
( fs) which is 4/3 of the center frequency( fc) of the input
signal band ( fs = (4/3) fc). That is, for given ADC and
DAC clock frequency, this allows input signal frequency to
be three times higher than with conventional Nyquist sam-
pling ( fc = (1/4) fs).

We call a modulator as a Nyqusit-sampling bandpass
∆Σ AD modulator if the center frequency of its signal band
as well as that of its internal bandpass filter are (1/4) fs, and
also as a subsampling bandpass ∆Σ AD modulator if those
are (3/4) fs.

Some discrete-time bandpass AD modulators have al-
ready adopted this “subsampling technology,” and LSI im-
plementations have been reported. However, only a few of
continuous-time bandpass AD modulator architectures us-
ing subsampling techniques have been reported [11], [12],
and to our knowledge, no LSI implementations have been
reported yet.

4. Subsampling Continuous-Time Bandpass ∆Σ AD
Modulator

4.1 NRZ DAC Case

Subsampling in a continuous-time bandpass modulator is
not easy to implement. If we use a NRZ (Non-Return-
to-Zero, first-order-hold) output DAC (Fig. 6) inside a
bandpass modulator and perform subsampling, then noise-
shaped output spectrum is not obtained. (We confirmed this
by MATLAB simulation, and the reason would be that gain
of NRZ DAC impulse response is maximum at DC and it is
attenuated by 10.45 dB at (3/4) fs (Fig. 5(a)).)

4.2 RTZ DAC Case

If we use a 25% RTZ (Return-to-Zero) output DAC (Fig. 6)

(a) NRZ DAC is used inside the modulator. There is a quantization
noise peak at (3/4) fs.

(b) 25% RZ DAC is used inside the modulator. There is a quanti-
zation notch at (3/4) fs.

(c) RF DAC is used inside the modulator. There is a quantization
notch at (3/4) fs.

Fig. 5 Simulated output spectrum of subsampling continuous-time mod-
ulators with bandpass filters of (3/4) fs center frequency and input signal at
≈ (3/4) fs.

and perform subsampling, there is a quantization noise
notch at (3/4) fs. (Fig. 5(b)). This method was proposed
by Lucent Technology in 2004 [11]. However, when using
this method, jitter of the RZ DAC sampling clock causes the
accuracy of the entire AD modulator to significantly dete-
riorate; so in a continuous-time modulator with RTZ DAC,
SNDR reduction due to jitter is more serious than with an
NRZ DAC.

5. Proposed Subsampling Bandpass ∆ΣAD Modulator
Architecture

At MIT, on the other hand, a Radio-Frequency Digital-to-
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(a) In case the digital input is “1.”

(b) In case the digital input is “0.”

(c) In case the digital input sequence is 1, 1, 0, 1.

Fig. 6 Output waveforms of 1-bit NRZ DAC, 25% RZ DAC and RF
DAC.

Analog Converter (RF DAC) was proposed to generate the
narrowband high frequency signal [13] (Fig. 6).

• The RF DAC output generates several cycles of a sine
wave (or cosine wave) during one sampling period. An
NRZ DAC, on the other hand, outputs a constant value
during one sampling cycle.
• Gain of the RF DAC impulse response is maximum at

0.883 fs and it is attenuated by only 0.23 dB at (3/4) fs,
and also it is 0 at DC. On the other hand, that of the
NRZ DAC is maximum at DC and it is attenuated by
10.45 dB at (3/4) fs (Fig. 7).
• Influence of sampling clock jitter on RF DAC is ex-

tremely small because its output is a continuous sine
(or cosine) wave and its slew rate is 0 (dDACout/dt = 0)
at each sampling timing. On the other hand, the output
data value of an NRZ DAC changes discontinuously at
each sampling timing, and the influence of jitter is sig-
nificant.

Fig. 7 Power spectrum of the impulse responses of NRZ DAC and RF
DAC. Gain of NRZ DAC is maximum at DC, while that of the RF DAC is
maximum at 3

4 fs.

Remark (i) The RF DAC described in [13] is used as a stan-
dalone DAC, and its application to bandpass ∆Σ AD modu-
lators is not discussed.
(ii) Application of a pulse-shaped DAC to a continuous-time
bandpass ∆Σ AD modulator was proposed, to reduce effects
of jitter, in [14]. However it does not discuss the subsam-
pling technique.

Based on the above-mentioned considerations, we
propose to use this RF DAC for (4/3) fc subsampling
continuous-time bandpass modulators (Fig. 5(c)).

• The center frequency of the input signal band is 3/4
of the sampling clock frequency at which internal
ADC and DAC operate. (That is, for given sampling
clock frequency, it can handle three times higher input
frequencies than with conventional Nyquist-sampling
(Fig. 3).)
• SNDR deterioration of the entire AD modulator caused

by sampling clock jitter of DAC is extremely small.

Also note that in general, continuous-time ∆Σ modulators
have the following advantages over discrete-time (switched
capacitor) circuits ones:

• Low power consumption
• High sampling clock frequency
• Design of the analog anti-aliasing filter that precedes

the modulator is simplified.

Next we will describe the proposed bandpass modulator ar-
chitecture, and MATLAB simulation results.

6. Principle and Operation of RF DAC

Figure 6 shows output waveforms of 1-bit NRZ DAC and
and RF DAC. The output of 1-bit NRZ DAC at sampling
time k is as follows:

• When the digital input is “1”:

Dout,NRZ(t) ≡ 1
(
for

k
fs
≤ t ≤ k + 1

fs

)
• When the digital input is “0”:
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Dout,NRZ(t) ≡ −1
(
for

k
fs
≤ t ≤ k + 1

fs

)
,

where (k = 0,±1 ± 2,±3, ...). On the other hand, the output
of a 1-bit RF DAC is as follows:

• When the digital input is “1”:

Dout,RF(t) = A1(t)
(
for

k
fs
≤ t ≤ k + 1/2

fs

)

Dout,RF(t) = A2(t)
(
for

k + 1/2
fs

≤ t ≤ k + 1
fs

)
.

• When the digital input is “0”:

Dout,RF(t) = A2(t)
(
for

k
fs
≤ t ≤ k + 1/2

fs

)

Dout,RF(t) = A1(t)
(
for

k + 1/2
fs

≤ t ≤ k + 1
fs

)
.

Here,

A1(t) = −1
2

cos{2π(2 fs)t} + 1
2

A2(t) =
1
2

cos{2π(2 fs)t} − 1
2
.

That is, the operation of RF DAC is as follows:

• When its digital input is “1,” it outputs a wave switched
at the middle of the sampling period in the order of
A1(t)→A2(t) as shown in Fig. 6.

• When its digital input is “0,” it outputs a wave switched
at the middle of the sampling period in the order of
A2(t)→A1(t).

This RF DAC circuit can be realized with a relatively-simple
differential pair circuit with a tail current source that alter-
nates the current at cos{2π(2 fs)t}. We propose the differen-
tial circuit topology of Fig. 8.

Power Spectrum of the impulse response of the RF
DAC is maximum at 3

4 fs and its DC component is 0 as

Fig. 8 1-bit RF DAC implementation circuit with differential topology.

Fig. 9 A block diagram of the proposed continuous-time bandpass
Σ∆AD modulator. The center freqeuency of the continuous-time bandpass
filter is 3

4 fs, and subsampling is achieved using RF DAC in the feedback
path.

shown in Fig. 7.
Noting these characteristics of the RF DAC, we pro-

pose a continuous-time bandpass ∆Σ modulator (Fig. 9)
which uses an RF DAC inside the modulator and performs
subsampling at the frequency 4

3 fc.
Also the RF DAC has the following characteristics for

k = 0,±1,±2,±3, ...:

A1(k/(2 fs)) = 0, A2(k/(2 fs)) = 0, (1)
dA1

dt

∣∣∣∣∣
t=(k/(2 fs))

= 0,
dA2

dt

∣∣∣∣∣
t=(k/(2 fs))

= 0. (2)

Thanks to these characteristics of Eqs. (1), (2), the RF DAC
is expected to be insensitive to sampling clock jitter [15],
[16]. On the other hand, an NRZ DAC is sensitive to such
jitter, and an RTZ DAC is much worse: it is influenced by
jitter on both rising and falling timing edges.

7. MATLAB Simulation

7.1 Subsampling Operation

To confirm the operation of the proposed bandpass mod-
ulator architecture, we have performed MATLAB simula-
tion. We use a continuous-time second-order bandpass filter
with center frequency (3/4) fs and a 1-bit RF DAC inside the
modulator, and apply an input signal of ≈ (3/4) fs as shown
in Fig. 10. The loop filter coefficient values are set as fol-
lows:

b1 =
1.5
30
ωc, b2 =

5
30
ωc where ωc = 2π

(
3
4

fs

)
. (3)

Figure 11(a) shows the modulator output power spectrum,
and we see that the quantization noise spectrum is noise-
shaped at (3/4) fs. Figure 11(b) shows SNDR vs. OSR
(OverSampling Ratio), and the slope is 15 dB/oct which is
close to the theoretical value [10]. Note that OSR is de-
fined as fs/(2 · signal bandwidth). Thus it is confirmed that
the proposed configuration of Fig. 10 operates correctly as a
subsampling bandpass ∆Σ modulator.

7.2 Jitter Effects

Next, we will discuss the jitter effect through simulation,
and compare the RF DAC case and RTZ DAC for pulse
width 25% case ([11]). We apply Gaussian random clock
jitter whose standard deviation (σ) is 1% of the clock period

Fig. 10 Simulation block diagram of the proposed method with internal
1-bit ADC/DAC.
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(a)

(b)

Fig. 11 (a) Output power spectrum of the proposed modulator (Fig. 10).
There is a quantization notch at 3

4 fs. (b) SNDR vs. OSR. The slope of
the graph is ≈ 15 dB/oct. MATLAB simulation results of the proposed
modulator (Fig. 10).

to the DAC. Fig. 12(a) and Fig. 13(a) show the modulator
output power spectrum for each case. Also Fig. 12(b), and
Fig. 13(b) show SNDR vs. OSR; we see that in the RF DAC
case, SNDR is insensitive to jitter, but in the RTZ DAC case,
SNDR degrades significantly due to jitter.

8. Extension to Multibit Modulator

In this section, we consider extending our subsampling
bandpass architecture by using multibit ADC/RF DAC in-
side the modulator to achieve higher resolution (Fig. 14).
Figure 15 shows a 3-bit RF DAC input sequence and its cor-
responding output waveform. When a 3-bit ADC/RF DAC
is incorporated inside a modulator, the stability is improved
and we can choose larger values of loop filter coefficients
inside the modulator (Fig. 14) which leads to further SNDR
improvement:

b1 =
3

30
ωc, b2 =

18
30
ωc, where ωc = 2π

(
3
4

fs

)
. (4)

Note that the coefficient values for 3-bit RF case in Eq. (4)
can be set larger than those in 1-bit RF DAC case in Eq. (3);
if the values in Eq. (4) are used in the modulator with 1-bit
RF DAC, it becomes unstable.

(a)

(b)

Fig. 12 (a) The output power spectrum of a subsampling modulator us-
ing 25% RTZ DAC when RZ DAC sampling clock jitter of 25% is consid-
ered. The noise floor rises greatly due to jitter. (b) SNDR vs. OSR of the
modulator with 25% RTZ DAC when RTZ DAC sampling clock jitter of
25% is considered. The SNDR deterioration is significant.

Figure 16(a) shows the output power spectrum com-
parison between 1-bit and 3-bit cases, and also Fig. 16(b) is
their SNDR vs. OSR comparison: SNDR of 3-bit case is
improved by 27 dB at OSR=64. We note that multibit mod-
ulators suffer from DAC nonlinearity problems, but Data
Weighted Algorithm (DWA) can overcome such problems
[5], [8].

9. Excess Loop Delay

Excess loop delay in the modulator can be defined as the
delay from the internal ADC output (which is fed to the in-
ternal DAC input) to the corresponding DAC output timing
(Fig. 17). It is known that the continuous-time bandpass ∆Σ
AD modulator suffers from such excess loop delay problems
[17]: when the excess loop delay becomes large, SNDR of
the whole AD modulator degrades. We have investigated
this problem for our architecture, and observe the follow-
ing:

• For a Nyquist sampling ( fin = (1/4) fs) bandpass mod-
ulator with 1-bit NRZ DAC, excess loop delay can be
as much as 0.7/ fs without degrading SNDR.
• For subsampling ( fin = (3/4) fs) bandpass modulator

with 1-bit 25% RTZ DAC, excess loop delay can be as
much as 0.06/ fs.
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(a)

(b)

Fig. 13 (a) Power spectrum of the proposed modulator output when sam-
pling clock jitter of RF DAC is considered. The noise floor rises slightly
due to jitter. (b) SNDR vs. OSR of the proposed modulator with RF DAC
when sampling clock jitter of RF DAC is considered. The SNDR does not
degrade.

Fig. 14 Simulation block diagram of the proposed method with internal
3-bit ADC/DAC.

Fig. 15 3-bit RF DAC input (left) and output (right).

• For subsampling ( fin = (3/4) fs) bandpass modulator
with 1-bit RF DAC, excess loop delay can be as much
as 0.03/ fs.
• For subsampling ( fin = (3/4) fs) bandpass modulator

with 3-bit RF DAC, excess loop delay can be as much

(a)

(b)

Fig. 16 (a) Output power spectrum of the proposed subsampling mod-
ulators with 1-bit RF DAC and 3-bit RF DAC. (b) SNDR vs. OSR of the
proposed modulators with 1-bit RF DAC and 3-bit RF DAC.

Fig. 17 Explanation of excess loop delay.

as 0.12/ fs.

We see that subsampling continuous-time modulators suf-
fer from excess loop delay problems, and modulators with
RF DAC suffer worse; the reason why subsampling mod-
ulators with RF DAC suffer worse from excess loop delay
than modulators with 25% RTZ DAC would be that RTZ
DAC output responds faster than RF DAC to input changes
(Fig. 18). However, multibit modulator structure is one way
of reducing effects of excess loop delay.

10. Conclusions

We have proposed a high-speed continuous-time bandpass
∆Σ AD modulator with an RF DAC which enables subsam-
pling techniques and reduces effects of DAC clock jitter, and
have confirmed its operation by MATLAB simulation. We
show a differential circuit implementation of the RF DAC.
We extend our modulator to a multi-bit structure and show
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Fig. 18 Consideration why the modulator with RF DAC suffers from ex-
cess loop delay.

that this alleviates excess loop delay problems. This band-
pass modulator architecture is expected to realize direct AD
conversion of RF signals, which facilitates implementation
of next-generation digital-rich analog-minimum radio sys-
tems.
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