

高周波連続時間バンドパス AD変調器アーキテクチャ ーRFサンプリングを目指してー

群馬大学大学院工学研究科電気電子工学専攻
通信処理システム工学第二小林研究室
上森将文、市川知成、林海軍、元澤篤史

指導教官 小林 春夫 教授

Kobayashi Laboratory

 翻帮馬大学 発表内容 1.研究目的 2.バンドパス AD 変調器の検討 3.RF DACの原理と動作 4. クロックジッタの バンドパス AD 変調器精度への影響 5.マルチビット構成 6.前段のアンチエイリアシングフィルタの検討 7. Excess Loop Delayの検討 8.まとめと今後の課題

Robayashi Laboratory

研究目的

Kobayashi Laboratory

AD変換器の実現アプローチ

バンドパス

AD 変調器 の検討

Robayashi Laboratory

Kobayashi Laboratory

内部ADC·DACの速度fsにより制限(fin=fs/4)

Kobayashi Laboratory fin=3fs/4~

サブサンプリング馬大学 連続時間バンドパス AD変調器(1)

Robayashi Laboratory

サブサンプリング馬大学 連続時間バンドパス AD変調器(2)

Robayashi Laboratory

25% RTZ DAC使用のバンドパスAD変調器出力パワースペクトラム

提案サブサンプリング 学 連続時間バンドパス AD変調器(3)

Kobayashi Laboratory

RF DACの原理と動作 (Radio Frequency DAC)

DAC単体は2004年M.I.Tより提案 2005年群大 バンドパス AD変調器への応用

Kobayashi Laboratory

Kobayashi Laboratory

◆差動対とcos(2 (2fs)t)の交流テール電流源 ◆比較的簡単な回路構成で実現可能

Kobayashi Laboratory

Gunma Universiza

RF DAC使用の AD変調器 SNDRとOSRの関係

Kobayashi Laboratory

クロックジッタの バンドパス AD変調器 精度への影響

ジッタ(時間雑音):クロックタイミングの揺らぎ

Kobayashi Laboratory

マルチビット 連続時間バンドパス AD変調器構成

Robayashi Laboratory

 ABDAC、ADCにマルチビットのものを使用
 より高精度なAD変換の実現

 DAC出力の非線形性が問題

 DWA等のミスマッチ軽減手法が必要

Kobayashi Laboratory

3bit RF DACの入出力関係

郡馬大

デジタル入力にアナログ振幅が対応

Kobayashi Laboratory

前段アンチェイリアシング フィルタの検討

Robayashi Laboratory

アンチェイリアシングラィルタ

アンチ エイリアシング フィルタ → → バンドパス フィルタ ADC DAC

・折り返し雑音を抑制するためのフィルタ
 AD変調器の前段に入れる
 ・連続時間 AD変調器においてはループフィルタ
 がアンチエイリアシングフィルタの役割も果たす。

Kobayashi Laboratory

Gunma Universijy

Excess Loop Delay の検討

Robayashi Laboratory

Kobayashi Laboratory

シミュレーション条件

◆連続時間バンドパス AD変調器の内部ADCから DACへの伝達時間の遅延

創群馬大学

◆CLK周期Tsに対する遅延割合:ELD = T_{ELD}/T_s[%]

Kobayashi Laboratory

Gunma Universida

Kobayashi Laboratory

(1)NRZ DACを用いた 1次ローパス AD変調器

Kobayashi Laboratory

(2) 25% RTZ DACを用いた 2次バンドパス AD変調器 中心周波数f_s/4

Gunma University

Kobayashi Laboratory

(3) 25% RTZ DACを用いた 2次バンドパス AD変調器 中心周波数3f_s/4

Gunma University

Robayashi Laboratory

SNDRとExcess Loop Delayの関係 -25% RTZ DACを使用した場合-Influence of Excess Loop Delay OSR=2⁰ -OSR=2¹ 100 OSR=2² OSR=2³ 80 OSR=24 60 サブサンプリング OSR=2⁵ SNR[dB] ►OSR=2⁶ 40 遅延要求が厳しくなる OSR=2 20 OSR=28 -20

3

Excess Loop Delay [%]

-40 0 1 Kobayashi Laboratory

Gunma University

5

(4) 1bit RF DACを用いた 2次バンドパス AD変調器 中心周波数3f_s/4

Gunma University

Robayashi Laboratory

RTZ DACの場合 遅延があっても すぐに値が出る。 遅延の影響は小

Kobayashi Laboratory

Gunma University

(5) 3bit RF DACを用いた 2次バンドパス AD変調器 中心周波数3f_s/4

Gunma University

Robayashi Laboratory

SNDRとExcess Loop Delayの関係 - 3bit RF DACを使用した場合-

まとめ 連続時間変調器のExcess Loop Delay

逾郡馬大学

ローパス、1bit NRZ DAC: 180%以上 fs/4, 1bit RTZ DAC: 70% (3/4)fs, 1bit RTZ DAC: 6% (Lucent社) (3/4)fs, 1bit RF DAC: 3%

(3/4)fs, 3bit RF DAC: 12%

マルチビット構成にすることで遅延要求緩和可能

Kobayashi Laboratory

Gunma University

まとめと今後の課題

Kobayashi Laboratory

Gunma University

まとめ

◆高周波狭帯域信号を高精度・低消費電力で AD変換するアーキテクチャを提案

■ 連続時間バンドパス AD変調器

RF DACによるサブサンプリングの実現

◆MATLABにより提案アーキテクチャの効果を確認

 今後の課題
トランジスタ回路レベルの設計
ペ RF DACの2chインターリーブ (帯域を広く取れる可能性有り)

Robayashi Laboratory

Gunma Universi79