脳と機械を繋ぐ技術、人と人を繋ぐ技術
神経工学の未来について

前橋工科大学 副学長 今村 一之

私が群馬大学工学部電子工学科の学生であった30年以上前のことである。電子工学科の学生でありながら、脳や神経の勉強がしたくて、自力でいろいろ勉強していた。研究室の仲間との議論で、「神経にケーブルを繋いで体の外のコンピュータに接続すれば、精神の仕組みがわかる・・・」というような話があった。理由はわからないが、私は今でもこの言葉をはっきり覚えている。当時は単純神経細胞の活動を記録する技術も十分に発達しておらず、電子回路でニューロンのモデルを製作し、それらを接続した簡単なモデル回路の特性を調べていた私は、「そんなことは絶対に不可能だ！」と考えていた。その後30年間に電気生理学は飛躍的に発展し、米国東部の実験室で記録されている神経信号を用いて西部の大学に設置されているロボットが動く時代がやってきた。所謂、脳・機械インタフェース（Brain-Machine Interface, BMI）と呼ばれる技術である。第一次運動野の10個程度のニューロンが脳の運動に伴ってどのように活動するかを同時記録し、関節の数（自由度）で規定される運動パターンと複数のニューロンの活動パターンを関連づける線形関数を求める。この関数を基にニューロン活動のみから脳の運動を忠実に再現することが、少なくとも動物を用いた研究では可能になっている（Vargas-Irwin CE et al., 2010）。この推定には、工学分野で良く用いられるサポートベクターマシンに関する手法が適用可能である。このような技術によって、脳の筋肉を制御する脊髄システムが障害されても、運動野の神経細胞の活動を利用して筋肉を直接刺激する、あるいはロボットアームを制御することにより、機能を補うことが可能になっている。さらに、正常人でも腕を動かそうと願っていただけで Shotgunの腕の運動を実現することが可能となる。ニューロンの活動を直接コンピュータに取り込むことができるようになるということは、脳活動をデコードして、思ったような動作につなげることが可能となるはずである。脳に直接ニューロン活動記録用の電極を刺入することのリスクは大きいが、神経疾患の治療で脳深部電気刺激法がすでに実施されており、電極を長期間留置することに伴う生体反応への対応法も研究がスタートしている。それでも脳から直接電気信号を記録することに抵抗があれば、頭皮上から記録される脳波の信号を用いることも可能である。この場合、脳波の空間分解能には限界があるので、脳皮質表面に精密に表現されている機能マップを利用することができない。そのため、脳波から必要な信号を抽出するための特別な信号処理方法が必要となるが、この方面の研究も精力的に行われてきている。著者が考えている最も重要な問題は、脳の持つ「可塑性」である。脳神経回路は環境に応じて変化する能力を持つ。学習する前と後では神経細胞の活動の様子は劇的に変わるのである。この特徴を考慮した関数を求めないと正しいデコーディングは不可能である。脳細胞にとっての効果器、すなわち最終的な出力は脳と筋肉である。発語も声帯筋を巧妙に収縮させることによって成立しているわけであるから、我々は他者の筋肉活動の観察を通して、そのひとの頭の中の様子を知ることになっている。従ってしばしば誤解が生じたり、騙されたりすることになる。BMIの技術と心を読む技術（マインドリーディング）の発展が高効率の「心伝心」を可能にすることと繋がっていくことに期待したい。