技術論文

瞬時位相推定法のジッタ測定への応用

An Application of the Instantaneous Phase Estimating Method to Jitter Measurements

山口 隆弘 Takahiro Yamaguchi 石田 雅裕 Masahiro Ishida

あらまし

重要なミックスド信号回路のひとつに、PLL回路がある。 PLL回路はマイクロ・コンピュータにおいてクロック発生回 路として用いられている。瞬時位相推定に基づくジッタ測 定法を提案し、SPICEシミュレーションを用い提案法を検 証する。従来のジッタ測定法の概観も与える。

PLL circuits are one of the important mixed-signal circuits. They are used as clock generators in various microprocessors. This paper presents a method based on analytic signal theory to extract both peak-to-peak and RMS jitter from PLL output measurements. The theoretical basis is described and simulated results are compared with existing techniques to demonstrate the performance and utility of this method.

1.はじめに

通信システムでは、受信信号に対し非線形処理をほどこ し位相同期ループ(phased-locked loop)回路へ入力すること により、搬送波の周波数と位相やシンボル・タイミングを再 生する。通信システムにおいては、クロック発生器はほか の部品とは別のチップになっている。このクロック発生器 は、バイポーラ、GaAsやCMOSデバイス技術を用いてVLSI 化されている。

多くのマイクロ・コンピュータにおいては、命令の実行は 一定周期のクロック信号により制御される。このクロック 周期はマイクロ・コンピュータのサイクル時間(cycle time) に対応する[1]。クロック周期が短すぎると、同期がとれな くなりシステムはロックしてしまう。マイクロ・コンピュー タにおいては、クロック発生器はほかの論理回路と同一チ ップ上に集積される。これらマイクロ・コンピュータは CMOSプロセスを利用して生産される。

通信システムではRMSジッタ(root mean square jitter)が重 要である。RMSジッタは信号対雑音比の平均雑音に寄与し、 誤り率を増加させる。一方、マイクロ・コンピュータでは、 ピーク・ジッタ(peak-to-peak)が、その動作周波数の上限を 決めてしまう。

VLSIテストでは、テスト項目当たり100msec程度のテス ト時間しか割り当てられない。したがって、従来のジッタ 測定手法はVLSI製造ラインでのテストへは適用できない。 本研究の第1の目的はVLSI製造ラインでのテストへ適用で きるジッタ測定手法を明らかにすることである。さらに、 PLLの研究開発では従来のジッタ測定手法が利用されてい るから、VLSIテスト段階のデータと開発段階のデータの互 換性が重要である。したがって、本研究は従来のRMSジッ タ測定やピーク・ジッタ測定との互換性を実現できる測定手 法を開発することを第2の目的とした。

2.従来のジッタ測定法

本章は従来のジッタ測定手法を論じる。ピーク・ジッタは、 オシロスコープを用い時間領域で測定される。RMSジッタ は、スペクトラム・アナライザを用い周波数領域で測定され る。各ジッタ測定手法の特徴と限界を明らかにする。

2.1 従来のピーク・ジッタ測定法

クロック信号のピーク・ジッタJ_pは、時間領域において測 定される。図1と図2にオシロスコープを用いたピーク・ジ ッタ測定例と測定系をそれぞれ示す。位相検出器の基準入 力へ被試験クロック信号を印加する。ここで、位相検出器 と信号発生器は位相同期ループを構成する。信号発生器の 信号を被試験クロック信号に同期させ、トリガ信号として オシロスコープへ供給する。この例では、クロック信号の 立ち上がりエッジのジッタを観測している。四角いゾーン を用いて、信号がクロスするレベルを指定する。ジッタは "被試験クロック信号がこの指定レベルをクロスする時間" と"トリガ信号が与える基準時間"の時間差の変動成分とし て測定される。この方式は測定に時間を要する。このため、 被試験クロック信号の周波数ドリフトが測定に影響しない ように、トリガ信号を被試験クロック信号に位相同期させ る必要がある。

時間領域におけるジッタ測定は、信号があるレベルを横 切る時刻の揺らぎを測定することに対応する。本研究では

ゼロ・クロス法と呼ぶ。波形変化率はゼロ・クロスにおいて 最大となるから、時刻測定のタイミング誤差は最小となる。

$$\Delta t = \left| \frac{\Delta A}{A 2\pi f_0 \sin(2\pi f_0 t)} \right| \ge \frac{\Delta A}{2\pi f_0 A} \tag{1}$$

図 3(a)に波形のゼロ・クロスを円で示す。ある立ち上が リエッジのゼロ振幅をクロスする時刻tiから、次の立ち上 がリエッジのゼロ振幅をクロスする時刻ti+2までの時間間隔 は、このコサイン波の周期を与える。図 3(b)はゼロ・クロ スから求めた瞬時周期pintを示す(隣り合うゼロ・クロスから 求めた)。

時間領域におけるジッタ測定の問題点をのべる。オシロ スコープを用い被試験クロック信号x_c(t)

$$x_{c}(t) = A_{c}\cos\left(2\pi f_{c}t + \theta_{c} + \Delta\phi(t)\right)$$
 (2)

をその立ち上がりエッジのゼロ・クロスのタイミングで捕捉 する。これは、つぎの位相角の条件

$$2\pi f_c t_{3\pi/2} + \theta_c + \Delta \phi(t_{3\pi/2}) = \pm 2m\pi + \frac{3\pi}{2} \quad (3)$$

を満たすx_c(t)のみが収集されることを意味する。立ち上がり エッジのゼロ・クロスに対応するサンプルの確率密度関数は

$$\frac{1}{2\pi\sqrt{A_c^2 - x_c^2(t)}}\bigg|_{x_c(t)=0}$$
(4)

であたえられる。したがって、被試験クロック信号をラン ダムに標本化してNポイントの位相雑音 $\Delta \phi(t_{3\pi/2})$ を集める のに要する時間は

$$(2\pi A_c)(NT_0)$$
(5)

となる。すなわち、ゼロ・クロスのサンプルしかジッタ推定 に利用できないため、通常の測定に比べ少なくとも(2 A。) 倍のテスト時間を必要とする。立ち上がりエッジのゼロ・ク ロスにniという番号を与えると、ゼロ・クロス法は

$$n_i(2\pi) \tag{6}$$

となる位相差を測定している。この結果、ゼロ・クロス法 で測定した瞬時周期は、ステップ関数を用いた粗い近似に なる。

1988年、David Chuはタイム・インターバル・アナライザを 発明した[2],[3]。これは、被測定信号のゼロ・クロスni(2) の整数値niを計数するとき、経過時間tiも同時に計数するも のである。この方法により、経過時間に対しゼロ・クロスの 時間変動をプロットすることが可能になった。さらに、 (t, n)を用いると測定データの間をスプライン関数(spline functions)で滑らかに補間できる。この結果、高い次数で近 似された瞬時周期を観測できるようになった。しかし、 Chuのタイム・インターバル・アナライザも、被測定信号の ゼロ・クロス測定に基づいていることに注意しよう。スプラ イン関数で補間することにより物理的意味を解釈しやすく しているが、瞬時周期の近似の程度をあげているにすぎな い。なぜなら、ゼロ・クロスの間に存在するデータは依然、 測定されていないのであるから。すなわち、タイム・インタ ーバル・アナライザもゼロ・クロス法の限界を超えるもので はない。

2.2 従来のRMSジッタ測定法

クロック信号のRMSジッタJewsは、周波数領域において測 定される。図4と図5にスペクトラム・アナライザを用いた RMSジッタ測定例と測定系をそれぞれ示す。被試験クロッ ク信号を基準周波数として位相検出器へ入力する。ここで、 位相検出器と信号発生器は位相同期ループを構成する。位 相検出器で検出した被試験クロック信号と信号発生器から の信号の位相差信号をスペクトラム・アナライザへ入力し、 位相雑音スペクトル密度関数を観測する。図4に示す位相 雑音スペクトル曲線より下の面積がJewsに対応する。周波数 軸は、クロック周波数からのオフセット周波数を表わして いる。すなわち、0Hzはクロック周波数に対応する。

位相検出器から、式(2)の被試験クロック信号x。(t)と基準信号

$$\mathbf{x}_{ref}(t) = A\cos\left(2\pi \mathbf{f}_c t + \mathbf{\theta}_0\right) \tag{7}$$

の位相差信号△φ(t)が出力される。このとき被試験位相同期 ループ回路へ印加している基準信号は一定周期であるから、 位相差信号△φ(t)は位相雑音波形に対応する。△φ(t)を有限時 間Tの間観測し、周波数領域に変換すると位相雑音パワスペ クトル密度関数GAAAA(f)を得る。

$$S_{\Delta\phi}(f) = \int_0^T \Delta\phi(t) e^{-2\pi f t} dt \tag{8}$$

$$G_{\Delta\phi\Delta\phi}(f) = \lim_{T \to \infty} \frac{2}{T} E[\left|S_{\Delta\phi}(f)\right|^2]$$
(9)

Parsevalの定理から、位相雑音波形の2乗平均値(mean square value)は

$$E[\Delta\phi^{2}(t)] \equiv \lim_{T \to \infty} \frac{1}{T} \int_{0}^{T} \Delta\phi^{2}(t) dt = \int_{0}^{\infty} G_{\Delta\phi\Delta\phi}(f) df$$
(10)

となる[4]。すなわち、パワスペクトルの和を測定することにより、位相雑音波形の2乗平均値を推定できるのが分かる。 2乗平均値の正の平方根(実効値)をRMSジッタJRMSと呼ぶ。

$$J_{RMS} = \sqrt{\int_{0}^{f_{MAX}} G_{\Delta\phi\Delta\phi}(f) df}$$
(11)

平均値がゼロのとき、2乗平均値は分散と等価であり、 RMSジッタは標準偏差に等しい。

図4に示すように、JRMSはクロック周波数近傍のGAAAA(f)の 和で精確に近似されうる[4],[5]。周波数領域における RMSジッタ測定には、位相検出器と位相雑音が小さい信号 発生器、スペクトラム・アナライザを必要とする。式(11)や 図4からわかるように低い周波数範囲を周波数掃引して位 相雑音スペクトルを測定する。このため、10分程度の測定 時間を要し、マイクロ・プロセッサのテストには適用できな い。さらに、周波数領域におけるRMSジッタ測定では、位 相情報が失われてしまっているため、ピーク・ジッタを推定 できない。

3.瞬時位相を用いたジッタ測定手法

本研究の目的は、(i)100msec程度の短いテスト時間でピ ーク・ジッタを測定できる手法、(ii)従来のRMSジッタ測定 やピーク・ジッタ測定との互換性を実現できる測定手法を開 発することである。なぜなら、PLLの研究開発では従来の ジッタ測定手法が利用されており、テスト段階のデータと 開発段階のデータの互換性が重要となるからである。特に、 短期間で設計変更を行ったり、プロセスを改良し歩留まり 向上を実現するためには、テスト結果を共有できるテスト 手法がキーになる。

3.1 瞬時位相を用いたジッタ測定の理論

式(2)から、位相雑音波形ムφ(t)はクロック周波数に対応す る搬送波の位相をランダムに変化させていると解釈できる。 このランダム位相変調の結果、搬送波の周期が揺らぎ、ジ ッタが生じる。実際に観測可能な量は、ランダム位相変調 信号の実数部のみである。しかし、もし虚数部を同時に観 測できれば、位相角を簡単にもとめることができる。この 概念は、クロック波形を解析信号とみなすことに対応する [6]。PLL内部を考えると、図6のように電圧制御発振器 (voltage-controlled oscillator)の発振波形を解析信号として扱 えばよい。

△φ(t)がクロック波形をランダムに位相変調している。し たがって、本研究の目的はクロック波形から△φ(t)を取り出 す手法を発見することになる。図7のブロック図は、本研 究が提案するジッタ測定手法を表わしている。被試験PLL 回路へは一定周期を厳密に維持し続ける基準クロック信号

が印加される。この結果、被試験PLL回路は内部で位相誤 差を生ぜず、VCOに起因するランダム・ジッタのみがクロッ ク波形に現われる。取り込んだクロック波形を解析信号に 変換し、その瞬時位相を推定し、線形位相からのばらつき よりジッタを測定する。図7に示す各ブロックの動作を説 明する。

Hilbert変換対生成器

図 8 に示すHilbert変換対生成器はクロック波形x_c(t)を解析 信号z_c(t)に変換する。x_c(t)のHilbert変換は

$$\hat{x}_{c}(t) = \mathbf{H}[\mathbf{x}_{c}(t)] = \mathbf{A}_{c}\sin(2\pi \mathbf{f}_{c}t + \mathbf{\theta}_{c} + \Delta\phi(t))$$
(12)

となる。x_c(t)と x_c(t)を複素数の実数部と虚数部とすると、 解析信号

$$z_{c}(t) = x_{c}(t) + j\hat{x}_{c}(t)$$

= A_ccos(2\pi f_{c}t + \theta_{c} + \Delta\phi(t)) + j A_csin(2\pi f_{c}t + \theta_{c} + \Delta\phi(t))
(13)

を得る。

瞬時位相推定器

瞬時位相推定器は、z_o(t)を用いてx_o(t)の瞬時位相を推定する。すなわち

$$\Theta(t) = [2\pi f_c t + \theta_c + \Delta \phi(t)] \mod 2\pi$$
 (14.1)
となる。つぎに、位相アンラップ法を (t)にほどこす。その結果

$$\theta(t) = 2\pi f_c t + \theta_c + \Delta \phi(t)$$
(14.2)

を得る。瞬時位相とアンラップ位相を図9に示す。

リニア位相除去器

さらに、リニア位相除去器は、リニア位相[2 fat + ₀]を 推定する。つぎに、 (t)からリニア位相を除去すると、瞬 時位相の変動項△φ(t)、すなわち位相雑音波形

$$\Theta(t) = \Delta \phi(t) \tag{14.3}$$

を得る。図10(b)は△φ(t)を示す。提案するジッタ測定アルゴ リズムは、△φ(t)からピーク・ジッタJ_PとRMSジッタJ_{RMS}を同 時に推定できる。J_PとJ_{RMS}は、それぞれ

$$J_{pp} = \max_{k} (\Delta \phi(k)) - \min_{l} (\Delta \phi(l))$$
⁽¹⁵⁾

$$J_{RMS} = \sqrt{\frac{1}{N} \sum_{k=0}^{N-1} \Delta \phi^2(k)}$$
(16)

となる。 この後、提案手法を△φ(t)法と呼ぶ。

3.2 提案手法とゼロ・クロス法の理論的比較

本節では、ゼロ・クロスに着目するとΔφ(t)法はゼロ・クロ ス法に等しいことを証明する。

信号の立ち上がりエッジ(ゼロ・クロスに等しい)のみを標 本化するとき、Δφ(t)法はゼロ・クロス法と等価になることを 証明する。ゼロ・クロスの周期をTzeroと表わすと、クロック 波形x_e(t)は

$$x_{c}(t) = A_{c} \sin\left(\frac{2\pi}{T_{ZERO}}t\right)$$
(17)

となる。解析信号

$$z_{c}(t) = x_{c}(t) + j\hat{x}_{c}(t)$$
$$= A_{c} \sin\left(\frac{2\pi}{T_{ZERO}}t\right) - jA_{c} \cos\left(\frac{2\pi}{T_{ZERO}}t\right) \quad (18)$$

を得る。z_o(t)の瞬時周波数(instantaneous frequency)は

$$f(t) = \frac{\omega(t)}{2\pi} = \frac{d\Theta(t)}{dt} = \frac{x_c(t)\hat{x}'_c(t) - \hat{x}_c(t)x'_c(t)}{x_c^2(t) + \hat{x}_c^2(t)}$$
(19)

で与えられる。よって、

$$f(t) = \frac{1}{T_{ZERO}} \tag{20}$$

となる。すなわち、信号の立ち上がりエッジのみを標本化 するとき、△φ(t)法はゼロ・クロス法と等価であることが証明 された。

4.シミュレーション実験

本章は、提案したジッタ測定手法の有効性をシミュレー ションにより検証する。提案したムφ(t)法をPLL回路へ適用 する。ジッタがあるPLL回路を用いて、提案手法の物理的 意味を確認する。

図11に示すPLL回路を0.6µm CMOSプロセスで実装するとし、電源電圧5Vとして、SPICEシミュレーションにより各種波形を得た。VCO発振周波数は、128MHzである。分周器(divider)がVCO発振波形を4分周し、32MHzのPLLクロックに変換する。4.2節は、この4分周クロックのジッタ測定結果について検討する。SPICEシミュレーション波形の時間分解能は50psecである。位相雑音波形ムφ(t)はシミュレーション波形から計算された。Δφ(t)推定はMatlabを用いてシミュレーションされた。

実験は、VCO発振回路の入力端に付加雑音を加えること により、PLL回路のジッタをSPICEミュレーションした。ガ ウス雑音はMatlabの関数randr()を用いて発生させた。さら に、図11に示すようにPLL回路のVCO入力端にこのガウス 雑音を加えた。

4.1 VCO発生クロックのジッタ測定

本節はVCO発生クロックを用いて、従来のジッタ推定法 とΔφ(t)法を比較する。RMSジッタ推定については、Δφ(t)法 とスペクトル法を比較する。ピーク・ジッタ推定については、 Δφ(t)法とゼロ・クロス法を比較する。

図12は、RMSジッタ推定値を比較するための条件を示し ている。従来法の位相雑音スペクトルとしては、提案手法 のアルゴリズムを用いて推定した△(t)のパワスペクトル密

度関数を用いた。スペクトル法は、2次高調波を含くまな い周波数範囲(10MHz--200MHz)の位相雑音パワスペクトル の和を求め、式(11)を用いてRMSジッタJRMSを推定した。図 12(a)の塗りつぶした部分がこの周波数範囲に対応するスペ クトルである。一方、Δφ(t)法は提案アルゴリズムと式(16) を用いてJRMSを推定した。これは、位相雑音波形Δφ(t)法の実 効値に対応する。ガウス雑音の3 を0Vから0.50Vまで変え、 図11に示すPLL回路のVCO入力端に加え、VCO発振波形の RMSジッタ値を推定した。図13に示すように、Δφ(t)法とス ペクトル法はほぼ互換性のある推定値を与えている。

図14は、ピーク・ジッタ推定値を比較している。三角はピ ーク値を示している。△φ(t)法とゼロ・クロス法で、三角の位 置が異なっている。これは、ピーク・ジッタがゼロ・クロス において発生するとは限らないことを意味している。図15

に示すように、Δϕ(t)法とゼロ・クロス法は互換性のあるJ_ℙ 推定値を与えている。

本節の実験結果をまとめる。提案したΔϕ(t)法は、RMSジ ッタ推定については、従来のスペクトル法と互換性のある 推定値を与える。ピーク・ジッタ推定についても、Δϕ(t)法 は、ゼロ・クロス法と互換性のある推定値を与える。

4.2 分周されたクロックのジッタ測定

本節は4分周されたPLLクロックを用いて、従来のジッ タ推定法とΔφ(t)法の性能を比較する。実験には図11に示し たPLL回路を用いた。その分周器は、VCO発振波形を4分 周し32MHzのPLLクロックに変換する。図16(b)にΔφ(t)波形 を示す。また、4.1節の結果と比較するため、付加ガウス雑 音の3 は0.05Vとした。

図17は、RMSジッタ推定値を比較している。Δφ(t)法と

スペクトル法はほぼ互換性のある推定値を与えている。 図17と図13を比べると、この実験における4分周はJRMSを 137 にしているのが分かる。

図18は、ピーク・ジッタ推定値を比較している。△φ(t)法と ゼロ・クロス法はほぼ互換性のある推定値を与えている。

本節の実験結果をまとめる。∆φ(t)法は、分周クロックの RMSジッタやピーク・ジッタも推定できることを検証した。 その推定値は、従来法と互換性がある。

5.まとめ

本研究は、クロック・ジッタを測定する新しい手法を明ら かにした。位相雑音波形△φ(t)はクロック波形をランダムに 位相変調していると解釈できる。逆に、クロック波形の瞬 時位相を推定できれば、瞬時位相の変動項△φ(t)が位相雑音 波形に対応する。提案手法は、Hilbert変換によりクロック

0.25

3σ of Additive Noise [V]

Fig.18 Peak-to-peak jitter measurements of 4-divided clock signal

0.30 0.35 0.40

0.15 0.20

図18 分周されたクロックのピーク・ジッタ推定値比較

波形x₀(t)を解析信号に変換し、瞬時位相の変動項∆φ(t)を推 定するという信号処理から成っている。

提案手法は次の特徴を持つ。(i)Δφ(t)の測定ポイントはゼロ・クロスに限定されない。この結果、100msecオーダのテスト時間でジッタ・テストを行える。(ii)分周されないVCO発振波形または分周されたPLLクロック波形のΔφ(t)から、 ピーク・ジッタとRMSジッタを同時に推定できる。(iii)Δφ(t)を用いて推定したピーク・ジッタ値は、従来のゼロ・クロス法による推定値と互換性を持つ。(iv)Δφ(t)を用いて推定した RMSジッタ値は、従来のスペクトル法の推定値と互換性を 持つ。これらは、SPICEシミュレーションとMatlabを用いた 測定シミュレーションにより検証された。

6 . 参考文献

- Mike Johnson, Superscalar Microprocessor Design, Prentice-Hall, Inc., 1991.
- [2] David Chu, "Phase Digitizing Sharpens Timing Measurements," IEEE Spectrum, pp. 28-32, 1988.
- [3] Lee D. Cosart, Luiz Peregrino and Atul Tambe, "Time Domain Analysis and Its Practical Application to the Measurement of Phase Noise and Jitter," IEEE Trans. Instrum. Meas., vol. 46, pp.1016-1019, 1997.
- [4] Jacques Rutman, "Characterization of Phase and Frequency Instabilities in Precision Frequency Sources: Fifteen Years of Progress," Proc. IEEE, vol. 66, pp. 1048-1075, 1977.
- [5] Kamilo Feher, Telecommunications Measurements, Analysis, and Instrumentation, Prentice-Hall, Inc., 1987.
- [6] Athanasios Papoulis, Probability, Random Variables, and Stochastic Processes, 2nd ed., McGraw-Hill Book Company, 1984.

筆者紹介·

(株)アドバンテスト研究所 第2研究部門 第1研究部 山口 隆弘 Takahiro Yamaguchi

(株)アドバンテスト研究所 第2研究部門 第1研究部 第1研究室 石田 雅裕 Masahiro Ishida

- 16 -

0.45

0.50