Presentation at Shenyang University of Chemical Technology

Recent Research Results

SAR ADC Algorithm with Redundancy

T. Ogawa, H. Kobayashi, M. Hotta, Y. Takahashi, H. San, N. Takai

Gunma University, Tokyo City University Supported by STARC

Published in

T. Ogawa, H. Kobayashi, et. al.,

"SAR ADC Algorithm with Redundancy and Digital Error Correction", IEICE Trans. Fundamentals, vol.E93-A, no.2, (Feb. 2010).

Sept. 2011

What is digital signal ? Sampling Quantization in time domain

Take data • and discard the other data.

What is digital signal ?

Quantization of Signal Level

Round the signal level to an integer.

Analog-to-Digital Conversion

ADC is for Digital Signal Processing

- Research purpose
- SAR ADC
- Binary search algorithm
- Non-binary search algorithm
- Proposed non-binary search algorithm
- DAC incomplete settling
- Conclusion

- Research purpose
- SAR ADC
- Binary search algorithm
- Non-binary search algorithm
- Proposed non-binary search algorithm
- DAC incomplete settling
- Conclusion

Research purpose

- Automotive electronics is the spotlight now.
- High speed, reliable SAR ADCs in microcontroller are important there.

 Optimal digital error correction algorithm for their realization.

- Research purpose
- SAR ADC
- Binary search algorithm
- Non-binary search algorithm
- Proposed non-binary search algorithm
- DAC incomplete settling
- Conclusion

SAR ADC Block

SAR ADC is digital centric.

 \rightarrow Suitable for fine CMOS implementation.

SAR ADC Characteristics

- High resolution (10-14bit)
- Middle sampling speed (10-40 MS/s)
- Small die area
- Low power (a few mW)
- Not use OP-amp

- Research purpose
- SAR ADC
- Binary search algorithm
- Non-binary search algorithm
- Proposed non-binary search algorithm
- DAC incomplete settling
- Conclusion

Binary search algorithm

Problem of binary search algorithm

- Research purpose
- SAR ADC
- Binary search algorithm
- Non-binary search algorithm
- Proposed non-binary search algorithm
- DAC incomplete settling
- Conclusion

Non-binary search algorithm

Non-binary search algorithm

Binary search algorithm(4-bit 4-step)

$$Dout = 2^{3} + 2^{2} \cdot d_{1} + 2 \cdot d_{2} + 1 \cdot d_{3} + 0.5 \cdot d_{4} - 0.5$$

Binary (Radix :2)

Conventional non-binary search algorithm (4-bit 5-step)

$$Dout = 2^{3} + \gamma^{3} \cdot d_{1} + \gamma^{2} \cdot d_{2} + \gamma \cdot d_{3} + 1 \cdot d_{4} + 0.5 \cdot d_{5} - 0.5$$

Radix : γ $\gamma = 2^{\frac{3}{4}}$

d_k : +1 or -1

Principle of error correction

Binary search algorithm

Comparator output : 1 0 0 1 - Only one

Dout = 8 + 4 - 2 - 1 + 0.5 - 0.5 = 9

Non-binary search algorithm

Comparator output : $1 \ 0 \ 1 \ 0 \ 1$ Dout = 8 + 3 - 2 + 1 - 1 + 0.5 - 0.5 = 9Comparator output : $0 \ 1 \ 1 \ 1 \ 1$

Dout = 8 - 3 + 2 + 1 + 1 + 0.5 - 0.5 = 9

- Research purpose
- SAR ADC
- Binary search algorithm
- Non-binary search algorithm
- Proposed non-binary search algorithm
- DAC incomplete settling
- Conclusion

Proposed non-binary search algorithm

Conventional non-binary search algorithm

$$Dout = 2^{3} + \gamma^{3} \cdot d_{1} + \gamma^{2} \cdot d_{2} + \gamma \cdot d_{3} + 1 \cdot d_{4} + 0.5 \cdot d_{5} - 0.5$$

Radix : γ $\gamma = 2^{\frac{3}{4}}$

Proposed Generalized non-binary search algorithm

$$Dout = 2^{3} + p_{2} \cdot d_{1} + p_{3} \cdot d_{2} + p_{4} \cdot d_{3} + p_{5} \cdot d_{4} + 0.5 \cdot d_{5} - 0.5$$

Flexible (not restricted to γ) \Box Optimal design
 $d_{k} : +1$ or -1

Design method of proposed algorithm

N-bit, M-step (M>N) Design redundancy.

$$2^M - 2^N = \left(\sum_{i=1}^{M-1} 2^i q_i\right)$$

 q_k : Redundancy at k-th step

Calculate step of reference voltage.

$$p_{k+1} = -q_k + 2^{M-k-1} - \sum_{i=k+1}^{M-1} 2^{i-k-1} q_i$$

 p_k : Step of reference voltage at k-th step

Proposed algorithm Example 1

Proposed algorithm Example 2

- Research purpose
- SAR ADC
- Binary search algorithm
- Non-binary search algorithm
- Proposed non-binary search algorithm
- DAC incomplete settling
- Conclusion

Settling of DAC output

Conversion time of each algorithm

Binary search algorithm Step1 Step2 Step3 Step4 Exact DAC settling \rightarrow Long time A/D conversion time Non-binary search algorithm Step Step Step Step Step Step 3 5 6 2 4

Correct incomplete settling error. Incomplete DAC settling \rightarrow Short time

Simulation of AD Conversion Ttime

Binary algorithm 14-bit,14-step Step time : 9.1 т **Proposed algorithm** 14-bit, 22-step Step time : 1.2 т

Comparison of ADC speed

- Research purpose
- SAR ADC
- Binary search algorithm
- Non-binary search algorithm
- Proposed non-binary search algorithm
- DAC incomplete settling
- Conclusion

Conclusion

SAR ADC for automotive

- Generalized non-binary algorithm.
- Optimal redundancy design method.
 → Reliable, Faster SAR ADC
- Digital Error Correction

 \rightarrow Suitable for fine CMOS implementation.

20% faster than conventional non-binary algorithm only with ROM contents modification.

Non-Binary SAR ADC Implementation and Measurement Results

31

Lesson from 老子

Un-useful things are actually useful.