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Outline

o Design equation
o EXpression easy to solve design equation
o EXxpression easy to measure controlled-object
o EXxpression easy to specify desirable control system

+ New control scheme: I-PD control
+ Smooth extension to design of sampled-data control

¢ Some examples designed
& Servo systems, decoupling control

¢ Smooth extension to nonlinear control
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Design Equation

Controlled-object

Compensator/Controller

= | Desirable control system

Expression should be easy

to indentify the controlled-object

to specify the desirabl

e control system

to solve the compensator/controller
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What functions should the expression
have for easy solution ?

We can clarify the functions in the process to solve the design equation below:
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The element is assumed as any
expression which can determine

the output for the given input.



Solution of design equation
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To be continued
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inv(P) = %ﬁ)lwd Y Jinv(p) -4
I T

C=ser(inv(P),inv(par(—1,inv(17y))))

The function turns out to be computability of series
connection of two elements, parallel connection of two
elements and inverse of each element.

Inverse is an element to give the input from the output.
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State equation expression Is not invertible

Forward
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A physical system does not have the inverse because D= (in general.




What Is the expression easy to compute

series and parallel connections and inverse ?

I Kitamori

In a static system the output is the same as the input multiplied by a gain for
an arbitrary input. For such static systems three computations are
straightforward.

A static system is a special case of a dynamical system. So we should be
able to extend the expression smoothly from static to dynamical system.

In a dynamical system, for an arbitrary input the output is not the same as the
Input multiplied by any constant.

We can find, however, a special class of inputs for witch the output is the
same as the input multiplied by a constant.

Using the class of inputs as a key, we can get an expression easy to compute
series and parallel connections and inverse after some manipulation. It turns
out to be the|transfer function|expression.
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Expression Easy to Measure
Controlled Object

The physical system is, in general, a distributed-parameter system. The
order of dynamics of a distributed-parameter system is infinitely high. It is
by no means linear. It can be time-variant. In addition, the boundary
conditions are very much complicated. Thus any model we can get through
measurement Is an approximation.

Yet we know empirically that if time-variation of the system is not so fast,
time-invariant approximation is useful, that if the range of operation is
narrow enough, linear approximation is useful, and that if dynamical change
IS not so fast, a lower-order approximation is useful and even static, that is,
0-th order approximation can be useful. Thus we have a lot of
approximating expressions for a system, and we naturally think that those
approximating expressions are close to each other.

To be continued



+ In measurement of dynamic characteristics we gather data from phenomena
which the system shows us and we estimate parameters in the model
expression. So any expressions approximating the same phenomena should

be very close to each other.
+ From observations in the following two slides, the transfer function

expression is suitable for measurement.

I Kitamori
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From the step response data two models are assumed
and the parameters of transfer functions are estimated.

R L .
o NAAANA /W . Negligible | | | |
u T Y 1+ s+[0.01k
10 F
(o, O
Close to 3 ere are two response 1
R each other a% - curves plotted corresponding
o—/\/\/\/\ o s +/ tothe two models. Thetwo -
1 ® |/ areindistinguishable. |
U C— Yy
1+ s 0.0 |
o o 0.0 time 10.0

R = 10°Q, C=10°F, L=10*H

The transfer function expressions are close to each other
and suitable to be measured.
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From the step response data two models are assumed
and the parameters of state equation are estimated.

N 6| «n
AP O, W
:o ° 2 . & o :
Fas g E'ﬂgé «(10%) —|10 10
o o E Yy = [1]0] +
w5 Ty . _
R Too big to be

o_/v\/\/\__o neglected
» o= y f[an] @[xl} (1l

= 01z 1+ DI
o o g 1L 0 Not close

to each other

R = 10°Q, C=10°F, L=10*H
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The state equation expressions are not close enough in spite
of step responses are indistinguishably close to each other.




How to specify desirable control system

o People intuitively evaluate control performance from the

shape of step response rather than performance indices.

o Steady state error Is as small as possible, and is zero if possible.
+ Response time Is as short as possible.

o Adequate damping Is desirable.
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: time 10.0 time 10.0
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How do coefficients operate
step response shape ?

[ [ [ [ [ [ [ [
o
- U0 (B TEEEL - 13 10% increased 4
’ unperturbed
10 B 10}
8 I @, 10% increased 3 N\ unpegturbed (red) 7
o . o an
é)‘,’ = a,10% increased - % - 1, 10% increased |
e [ 1 g T (indistinguishable) 7
0.0 ' 0.0 !
0.0 time 20.0 0.0 time 20.0
1 ) 1
2 3 4 2 3 4
a,t a,;st a,s"+ a;s°t+ a,s 1+ 4s+ 65"+ 45°+ 15

Lower-order terms are effective to shape the step response,
whereas higher-order terms have little effect on the shape.

. This enables us partial compensation of lower-order terms only.
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Design equation for PID control

b(s)
a(s)

c(s)

=1
+ —+ T s:
lg 1s Y

— :KP

b, (s)

a, (s)

ot ast a252 + CL38 + L

by + bs + bys® + bys® + L

a(s) =
b(s) =

_ 2 3
aq(s) = ago + ags T ages” + agzs® + L

c(s) 0(s)
s _als) _ _buls)
) W) a)
s a(s)

bi(s) = bao + bars + bygas® + bygs® + L
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DEF is essential for PID design

c(s) b(s) Information needed about
s afs) _ bys) controlled-object:
s Bs) ayls) o) | i
s als) b(s)
c(s)= ¢t st s’ T L - aorfr a1r3+ CLerQ + L
a(5) . and about desirable control system:
o) el | %) L i[(s)
by(5) : ba(s)
Inveréof \ = aly + a5t al,s*+ L
controlled-object Inverse of Denominator expanded
desirable control system form (DEF)

Maclaurin expansion of inverse
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Transfer function

and step response
1.0
shape .
1 2
1+ s+ 0.58*+ 0.15s” 0
0. =
1+ 0.25s m
1+ 1.25s+ 0.755°+ 0.275s° + 0.0275s"
21+ 0'583 : <« Many to one
1+ 1.5+ s+ 0.4s° + 0.065s correspondence.
1+ s
1+ 25+ 1.55°+ 0.65s° + 0.14s" _ _
1+ 9 Transfer function expression

1+ 3s+ 2,552+ 1.155% + 0.29s* Is redundant.
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DEF Is decisive for
step response shape
) g
1+ s+ 0.5s°+ 0.15s° 00
| 0. : A : 9.0

1+ s+ 0.55°+ 0.155°= 0.01s" + 0.00255”— 0.0006255° + L

1 Denominator
1+ s+ 0.5s°+ 0.15s°— 0.01s*+ 0.005s° - 0.0025s°+ L. eXpanded form
1 DEF
1+ s+ 0.5s°+ 0.15s°— 0.01s*+ 0.01s°— 0.01s° + L 1
1 denominator polynomial
1+ s+ 0.55°+ 0.155°~ 0.01s* + 0.02s° — 0.04s° + L. numerator polynomial
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Relations among MacLaurin series, moment
series, and numerator expanded form (NEF)

2 3
G(s)= Go)+ 9G] o+ LAG o 1dGH oy
dsl|., 2!ds"|_, 3! ds” | _,
_ st 34 _ 1 o 1 3
G(s)= o g(t)e “dt= m,— ms+ T T + L
0 . .

where m, = e | g(t)t'dt is i-th moment
0

of impulse response around ¢=0

b,+ bst bs’+ bs’+ L

= = dy+ dis+ d,s*+ dys”+ L
Gls) a,* a,st a,s°+ a,s°+ L IR =
1d 1
d; = .dG(-S) = (1) =m,
! ds’ 7!

s=0
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Moment series expression of transfer function

G(s)= « g(t)e *dt

0

= . g(t) M- st l52752— i53753+ i34754— L. dt
0 - 21 3! 4!
' ' I, - 2 1 5 - 3
= . g(t)dt— s 0 g(t)tdt+ a° % g(t)t dt— ST g(t)t°dt+ L
1 1

= my,— mst —m,s — —m,s + L
2! 3!

where m_. = | g@)t'dt is i-th moment
0

of impulse response around =0
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Relation between DEF and NEF

+ b s+ b.s’+ b,s°+ L _
G(s)= b " bs b282 S . (transfer function)
a,t ast a,s”t a,s”+ L
=d,+ dst+ d,s’+ d,s’+ 1L (NEF)

1

= DEF
c,t ¢st c,s°+ c,s°+ L ( )
1 1 1
Co— d_o, C,— d_ocodla Cy— d_o(cod2+ cd,)

1
C— — d—(cod3+ ad,tcd), L L L

0
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Equivalence relation among expressions

Co

Cs

I Kitamori

=1

0 d
1

C— — d_cod1
0
1

Co— d_(cod2+ C1d1)
0

L L L

Determinable relation independently from successors

(Series can be truncated at any term.)

Independency from successors (IFS)
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Time scale normalization of DEF

Q

2 3 4
a,t ast a,s"t a;s"t a5t L

B 1
1+ ﬂS‘F £32—|— %83"‘ &34+L
Q Q Q Q
a a
Q a,y
1

S Eﬁ 4
CL .;& L ]
S|_3+ _4;_0: 3|_4+ I,
Q }Za\l

1+ sl+ a8+ a,s°+ a,s/*+ L

The first moment (average delay time) is set to 1.

I Kitamori
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Average delay time setto o

The average delay time o of impulse response or the rise-

time of step response depends on the controlled-object
given and the controller/compensator used. Therefore it
cannot be specified beforehand. It is to be determined
within the process of design or model matching.

If we put the rise-time equal to s (s' 2 ss), we obtain
the DEF of desirable control system as
1

1+ ss+ a,s’s’+ a,s°s’+ a,s's"+ L

W, (s)=

I Kitamori
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Specification of desirable control system

1

2 2 4 4
1+ ss+ a,s°s’+ a,s°s’+ a,s's'+ a,s°s”+ L

W, (s)=

o Zero offset error in step response:
W,(0)=1
¢ Adequate damping:
ta, =11 1, 0.5 0.15, 0.03, 0.003, L }
o Quick response speed:
S 9 as small as possible positive value

I Kitamori
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PID control for forth-order lag

PID-r Pl-r

=
o

step response

=
o

1+ 4s+ 2.45°+ 0.448s° + 0.0256s"

26



PID control for object with pure delay

2



A new control scheme

¢ Why PID ?
o No better control scheme ?
¢ Introduction of I-PD control scheme

I Kitamori
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What compensation should we use ?

Given the controlled-object and the desirable system as follows:

controlled-object: &% a, & a, &t a,y+ ayy® = byu
desirable system: & a, & a, &t a,y+ ayy’ = by

Solve the compensator form the equation below:

v u—= & a, @ o, ayt ayy = bu —> Y

compensator

— & a, & at agyt 3000:93 = bv ——>y

[
c

I Kitamori
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Rewriting the desirable system into the form of controlled-object as

& (a, + ay— a8t (a,+ a,— a)gt (ag+ ay— ay)y

_ 3 _
T (3000 T Qo aooo)y = byv

3
& a, 8 a, ¥ ayyt ayy
B3
153 a.—a a —a a —a a —a
_ Sy 2 1 1 0 0o .. o000 000 ,,3
= by 2v e ¥ Y Y
ZE\ bo bo bo bo
~— S— R
U

we get the control input u to the object as follows:

a. — a al—al

y _ ﬁl‘ &‘L‘ 000 000 y

b b b b

0 0 0 0

= v~ foy~ h¥ LE fuoy

sz2_ a2

I Kitamori
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Structure of compensation

(V) U

_ Yy
&t a, & a,g a,y+ a000y3 = byu >

Joyt L Lo foooy3 <«

Feedback compensation structure Is obtained !

& a, @ a8 ayy+ ag,y” = b, (U_ Joy— i Lg% foooyg)
g <a2+ by J5) & (a1+ bo J{ ) et <ao+ bo/{iij <CL0007L by 000)y3: byv

One-to-one, additive compensation is very easy to
adjust each coefficient to any value.
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+>Q6>k- e dt

Structure of control : 1-PD scheme

Type |
controller

ayy+ a, ¥ a, @ L+ agy” = byu

t 8= ke

E& a, a g +ayt aooo?/BZ byv

ce= Ty

& a & a & a f 3a,,y & bky= bkr

Zero offset in the step response is assured structurally.

foyt fig L L+ fy” e
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|-PD control for forth-order lag

I-PD-r I-P-r

=
o

step response

1+ 4s+ 2.4s*+ 0.448s° + 0.0256s"
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|-PD control for object with pure delay
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Sampled-data control

o Isitdigital or analog ?
+ Controlled-object Is analog, so sampled-data control system as a
whole is analog.

o If the sampling period approaches to zero, the system should
become the continuous-time system. (Continuity of sampled-
data control and continuous-time control)

I Kitamori
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Design of sampled-data control

reference input

R(s)

>

compensator
[controller

discrete time base

Controlled
-object
continuous time base

controlled output

>

Y(s)

I Kitamori

sampled-data control system
continuous time base

Both reference input and controlled output
can be described in Laplace transform.
Thus, control system should be treated in R(s
Laplace transform.
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Continuity of sampled data-control
and continuous-time control (PID)

Sampling period
=0 .04 .08 .16 .32 .64 1.28

1.0

. “oarnpied-data control

= approaches to

> continuous-time control
o as sampling period

= approaches to zero.

0.0 |

0.0 8.0

controlled

object: 1+ 4s+ 2.4s*+ 0.448s’ + 0.0256s"

I Kitamori
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Sampled-data I-PD control

sampling period
0 .125 25 51 2

=
o

—
L Sl D&

I-PD mode control

step response

—_— e e—

1+ 4s+ 2.4s*+ 0.448s° + 0.0256s"

' - _ — . D ———

38



I Kitamori

Some examples designed

Tracking servo for ramp input
Tracking servo for parabolic input
Tracking servo for sinusoidal input
PID and I-PD decoupling control

Sampled-data decoupling control with two different sampling
periods

39



Tracking servo for ramp Input

i0.0p

0.0 > 10.0
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Tracking servo for parabolic input
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Tracking servo for sinusoidal input

o
—
o~
&
o
%
. ©
=
=
59
S ol
]
o
"
T
o
Q
< T T T T  p— T T T i
8.00 4.00 8.00 12.00 16.00 = 20.00
TIME
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Example of 2-input-2-output
controlled-object

1y
ul —Y]
| R3="1 1
uo Y A e T R:R,:R,=1:2:5
Ro== = | 2=
— (' —

137.95 1498 85.44 1424
29.95 22. 98 28.48 33.76

@%} 6 28 ,, 30 0.0
5.6 11. 5 ° D.0 1.0
52.93+ 298.91s+ 484.48s°+ 336.71s°+ 111.92s"* + 17.4s° + s°

3
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PID decoupling control 4]

1.0

y2(PID) y2(PI)

/yZ(I)
2 / s 2
ul: unit step, u2: zero

(a)

y2(object)

\ ;
‘/,yl(f}) chl(lz yl(object)

/ /
ul: zero, u2: unit step

(b)

1



I-PD decoupling control 2]

y1(I-PD)  y1(I-P)

y2(I-PD!//y2(I-P) y2(1)

ul: unit step, u2: zero

(a)

y2(1-pPD) y2(1-P)

1.0

yl(I-P)/yl(I)

/—‘—-*"""J;(:o

ul: zero, u2: unit step
(b)

0.0
0.0

I Kitamori
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Sampled-data decoupling control
with two different sampling periods

yr ‘ yr
Lo} Lo}
0.5} y n 0.5} »
/[ ’
0.0 e s 00 el N T a— T00
. (a1) Time 9 Time
(a1): BFAD vy=), »,=0DIRE (22)
(a2) : w,=0, w,=1NIRS
y . y
1.0 c* - 5.0 10} ” 5.0
f|ﬂ /“I
0.5 L 0.0 0.5 P Jo.0
e 7o | - c =
0.0 K L. o5 0.0 il 08,10
o5 " T I Sampling perlodsSt
, \ . o . are set as 2s for 1
1.0 ' ' Pl 5.0 IOOp and 203 for
P -

. 2" loop. No
I s, deterioration is

o T R TR T 0 2§ 0 >
L (] -(fl).zo w2, ry=20 Seen .
b3 :::I

(bl"‘b‘) . !ﬂﬂn-l-. 7= 0NN

Mori, et al.[8]
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Nonlinear control

+ If the region of control is narrow enough linear control Is
sufficient. For wider region nonlinearity becomes unable to be
neglected. However, there is no definite boundary of the region.

+ Nonlinear control should be smoothly extended from linear
control.

I Kitamori
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Continuity of nonlinearity and linearity

I Kitamori

output

A

> Input

Region where linear approximation
seems effective.

There, however, is no definite
boundary of the region.
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s

Smooth extension of
ear expression to nonlinear

49

Linear static

Nonlinear static

Linear dynamic

Nonlinear dynamic

a,y t a1§&+ a2& L

T AgYY + ao1y§&+ aloﬁy+ CLOQ?J&lTF L

T QoYY | T aomyyg&r aom?J?Sger a1oo§yy+ %02&@&1TF L
+ L L L

= by + bydet b, L

+ by uu + by udt bdut+ b,udt L
+ byouuts | T by uudt by udu+ by duut+ byuudkt L
+ L L L

Computation of series and parallel connections and inverse is straightforward.
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Linear and second degree
approximation around the
working point of reversed
field pinch (RFP) fusion
power reactor

The state equation of
reactor has nonlinearity as
high as eighth degree.

Shimotohno, et al. [9]

I Kitamori
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ol

Interaction from temperature to

power output

Open [oo/b

— SgyﬁiT='+4O.2
——— : $g,= -0 5

8 8
R -2
g| o E
g- XX T < S
OO P#
N - b
. 7
.
54 <
8 g~
L~ :’-! '§ ;
Frr % =
z - = m
—8 gg
ﬁ' _EE
=
- - -~ ©
] P 8o
=8 -85
8 \ | g
2 : -S
ﬂ-ﬁ B
g 3
— ¥ | 1 i R I 1 L ] 1 L] L] L L 1 1 1 o
1) 20.00 40.00 60.00 80.00 100.00 120.00 140.00 160.00 180.00 200.00
TIME (SEC) ‘

Shimotohno, et al. [9]
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Decoupling control with I-P and
second-degree compensation

8 B : 202526534V g
&7 J3 : const: &
X=X T 13
100 PFf L
§._ & : const, _;j
To: 2025165 "2
8 | 8~
> 7 =
g‘: ‘ » - 02
—8 e e
& \ _ _ _ Fea
§ With nonlinear compensation |_z
(T8
o- J } >¢ —8
v ! ” 4
:0. 0o : 2:).00 5 JJ.OI) & 61).00 I BTU.DU . 1100.00[ 1'20.00" 1.140.0!:!I 1150.00[ 1180.0l;r ZOIEIJO
TIME (SEC)

T Kitamori Shimotohno, et al. [9]
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Control inputs

§1 | l -E‘
o XX SL1 ” I
100 S5z X20 -
08._ - | _'?30
g Fueling rate l 8
2 7 -5
N N
"g s SD(ST) I 2 ‘g
i 71 35
'ég With nonlinear compensation |3
{ Impurity < J
o e - Z
3 injection rate 7 &
- 8
DTIIO ' 2:).00 ' &b 00 ' 5]0.&) b !:'I.OO K ﬁm.ooﬁ 1 .Il)l 1.140.00I 1160.00] 1180.00] 206300
TIME (SEC)

Better control with smaller control input
by 1-P and second degree compensation  Shimotohno, et al. [9]
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