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Outline 

 Design equation 

 Expression easy to solve design equation 

 Expression easy to measure controlled-object 

 Expression easy to specify desirable control system 

 New control scheme: I-PD control 

 Smooth extension to design of sampled-data control 

 Some examples designed  

 Servo systems, decoupling control 

 Smooth extension to nonlinear control 
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Design Equation 

Expression should be easy 

to indentify the controlled-object 

to specify the desirable control system 

to solve the compensator/controller 

 Controlled-object    connection     Compensator/Controller    

                          ＝   Desirable control system 
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What functions should the expression 

have for easy solution ? 

= Wd 
r y 

P C 
r e u y 
+ - 

C 
e u 

= ? 

element 
input output The element is assumed as any 

expression which can determine  

the output for the given input. 

We can clarify the functions in the process to solve the design equation below: 
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= 

= 

= 

= 

inv(Wd) r y 

Wd 
r y 

P  C 
e u y 

inv(C) inv(P) e u y 

Wd 
r e y 

+ + 

inv(C) inv(P) r e u y 

+ + 

inv(Wd) r e y 

+ - 

P C 
r e u y 
+ - 

Solution of design equation 

To be continued 
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= 

= P  C 
e u y 

=
 

P C inv(P) 

C 
e 

e u y u 

u 

inv(P) Wd 
r e u y 

+ + 

Wd 

r e y 

+ + 

C=ser(inv(P),inv(par(-I,inv(Wd)))) 

The function turns out to be computability of series 

connection of two elements, parallel connection of two 

elements and inverse of each element. 

Inverse is an element to give the input from the output. 
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A physical system does not have the inverse because                in general. D 0=

State equation expression is not invertible 
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 In a static system the output is the same as the input multiplied by a gain for 

an arbitrary input.  For such static systems three computations are 

straightforward. 

 A static system is a special case of a dynamical system.  So we should be 

able to extend the expression smoothly from static to dynamical system. 

 In a dynamical system, for an arbitrary input the output is not the same as the 

input multiplied by any constant.  

 We can find, however, a special class of inputs for witch the output is the 

same as the input multiplied by a constant.     

 Using the class of inputs as a key, we can get an expression easy to compute 

series and parallel connections and inverse after some manipulation.  It turns 

out to be the transfer function expression. 

What is the expression easy to compute 

series and parallel connections and inverse ? 
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Expression Easy to Measure 

 Controlled Object 

 The physical system is, in general, a distributed-parameter system.  The 

order of dynamics of a distributed-parameter system is infinitely high.  It is 

by no means linear.  It can be time-variant.  In addition, the boundary 

conditions are very much complicated.  Thus any model we can get through 

measurement is an approximation.   

 Yet we know empirically that if time-variation of the system is not so fast, 

time-invariant approximation is useful, that if the range of operation is 

narrow enough, linear approximation is useful, and that if dynamical change 

is not so fast, a lower-order approximation is useful and even static, that is, 

0-th order approximation can be useful.  Thus we have a lot of 

approximating expressions for a system, and we naturally think that those 

approximating expressions are close to each other.  

To be continued 
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 In measurement of dynamic characteristics we gather data from phenomena 

which the system shows us and we estimate parameters in the model 

expression.  So any expressions approximating the same phenomena should 

be very close to each other.   

 From observations in the following two slides, the transfer function 

expression is suitable for measurement.  

 



T. Kitamori 

11 

R 

C u y 

y 

L 

C u 

R 

s

1

1 +

0.01s s2
1

1 + +

0.0

1.0

0.0 10.0time

st
ep

 r
es

p
o

n
se

The transfer function expressions are close to each other 

and suitable to be measured. 

Negligible 

From the step response data two models are assumed 

and the parameters of transfer functions are estimated. 

-6 4Ω, =10 F, =10 HR C L610=

Here are two response 

curves plotted corresponding 

to the two models.  The two 

are indistinguishable. 

Close to 

each other 
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Not close 

 to each other 

Too big to be 

neglected 

The state equation expressions are not close enough in spite 

of step responses are indistinguishably close to each other. 

From the step response data two models are assumed  

and the parameters of state equation are estimated. 

-6 4Ω, =10 F, =10 HR C L610=



T. Kitamori 

13 

How to specify desirable control system 

 People intuitively evaluate control performance from the 

shape of step response rather than performance indices.  
 Steady state error is as small as possible, and is zero if possible. 

 Response time is as short as possible. 

 Adequate damping is desirable.  
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a a s a s a s a s s s s s2 3 4 2 3 4
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1 4 6 4 1
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+ + + + + + + +

Lower-order terms are effective to shape the step response, 

whereas higher-order terms have little effect on the shape.   

This enables us partial compensation of lower-order terms only. 

How do coefficients operate 

 step response shape ? 
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Design equation for PID control 
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DEF is essential for PID design 

Information needed about 

controlled-object: 

Inverse of 

desirable control system 

Inverse of 

controlled-object 
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Denominator expanded 

form (DEF) 

Maclaurin expansion of inverse 

and about desirable control system: 
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Transfer function expression 

is redundant. 

Many to one 

correspondence. 

Transfer function 

and step response 

shape 
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    where   is -th moment

 of impulse response around =0
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Relations among MacLaurin series, moment 

series, and numerator expanded form (NEF) 
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(transfer function)

(NEF)

(DEF)
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Independency from successors  (IFS) 

Determinable relation independently from successors 

(Series can be truncated at any term.) 

Equivalence relation among expressions 
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Time scale normalization of DEF 
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The first moment (average delay time) is set to 1. 



T. Kitamori 

24 

The average delay time s of impulse response or the rise-

time of step response depends on the controlled-object 

given and the controller/compensator used.  Therefore it 

cannot be specified beforehand.  It is to be determined 

within the process of design or model matching. 

( )

If we put the rise-time equal to  ( , we obtain 

the DEF of desirable control system as

  d

s s

W s
s s s s2 2 3 3 4 4

2 3 4

)

1

1

s s

s a s a s a s

｢ｺ

=
+ + + + + L

Average delay time set to s 



T. Kitamori 

25 

 Zero offset error in step response: 

 

 Adequate damping: 

 

 Quick response speed: 
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as small as possible positive values ｮ

Specification of desirable control system 
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A new control scheme 

 Why PID ? 

 No better control scheme ? 

 Introduction of I-PD control scheme 
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What compensation should we use ? 

controlled-object

desirable system

y a y a y a y a y b u

y y y y y b v

3
2 1 0 000 0

3
2 1 0 000 0a a a a

+ + + + =

+ + + + =

&&& && &

&&& && &

：

：

y a y a y a y a y b u3

2 1 0 000 0+ + + + =&&& && &

compensator 

yuv

y y y y y b v3
2 1 0 000 0a a a a+ + + + =&&& && & yv= 

Given the controlled-object and the desirable system as follows: 

Solve the compensator form the equation below: 
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we get the control input u to the object as follows: 
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Structure of compensation 
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One-to-one, additive compensation is very easy to 

adjust each coefficient to any value. 
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Feedback compensation structure is obtained ! 
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Structure of control : I-PD scheme 
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Zero offset in the step response is assured structurally.  
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Sampled-data control 

 Is it digital or analog ? 

 Controlled-object is analog, so sampled-data control system as a 

whole is analog. 

 If the sampling period approaches to zero, the system should 

become the continuous-time system.  (Continuity of sampled-

data control and continuous-time control) 
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R s( )

Design of sampled-data control 

Both reference input and controlled output 

can be described in Laplace transform. 

Thus, control system should be treated in 

Laplace transform. 

controlled output reference input 

Y s
W s

R s
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=

sampled-data control system 
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discrete time base 

continuous time base 
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Sampled-data control 

approaches to 

continuous-time control 

as sampling period 

approaches to zero. 

Continuity of sampled data-control  

and continuous-time control (PID) 
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Sampled-data I-PD control 
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Some examples designed 

 Tracking servo for ramp input 

 Tracking servo for parabolic input 

 Tracking servo for sinusoidal input 

 PID and I-PD decoupling control 

 Sampled-data decoupling control with two different sampling 

periods 
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Tracking servo for ramp input 
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Tracking servo for parabolic input 
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Tracking servo for sinusoidal input 
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Example of 2-input-2-output  

controlled-object 
R1
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R3

C
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s s

s s s s s s

2 3

2 3 4 5 6
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5.6 11.2 0.0 1.0
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PID decoupling control [4] 
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I-PD decoupling control [3] 
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Sampled-data decoupling control 

with two different sampling periods 

Mori, et al.[8] 

Sampling periods 

are set as 2s for 1st 

loop and 20s for 

2nd loop.  No 

deterioration is 

seen.  
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Nonlinear control 

 If the region of control is narrow enough linear control is 

sufficient.   For wider region nonlinearity becomes unable to be 

neglected.  However, there is no definite boundary of the region.    

 Nonlinear control should be smoothly extended from linear 

control. 
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Continuity of nonlinearity and linearity 

input 

Region where linear approximation 

seems effective. 

There, however, is no definite 

boundary of the region. 

output 
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Smooth extension of  

linear expression to nonlinear 

Computation of series and parallel connections and inverse is straightforward. 
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Shimotohno, et al. [9] 

The state equation of 

reactor has nonlinearity as 

high as eighth degree.  

Linear and second degree 

approximation around the 

working point of reversed 

field pinch (RFP) fusion 

power reactor 
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Interaction from temperature to 

power output  

Shimotohno, et al. [9] 
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Decoupling control with I-P and 

second-degree compensation 

Shimotohno, et al. [9] 

With nonlinear compensation 
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Control inputs  

Better control with smaller control input 

 by I-P and second degree compensation Shimotohno, et al. [9] 

With nonlinear compensation 

Fueling rate 

Impurity 

injection rate  
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