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Presented here is a unified design method which covers from linear continuous-time to 

sampled-data, from linear to smooth nonlinear, and from SISO to MIMO decoupling control. The 

method has been constructed strongly related to physical and empirical actualities. One of the physical 

actualities is that the controlled object is, in general, a combination of nonlinear distributed-parameter 

systems with highly complex boundary conditions. Therefore we can hardly build up any accurate 

model for analysis and design. Any modeling whatsoever is an approximation. Empirically, however, 

we know that a lower-order approximation is effective if the time evolution speed is not so high, and 

that a linear approximation is effective if the range of variation is sufficiently narrow. In the simplest 

application even static approximation is useful. Thus we are to work on these varieties of 

approximated modelings. 

For control system design, we can think of an equation such as 

       [controlled object](connection)[compensator/controller]=[desirable control system]. 

In order to determine the compensator/controller, we have to rewrite the equation in some convenient 

expression to handle with. The expression should be convenient for the measurement of controlled 

object dynamic characteristics, convenient for the specification of desirable control system, and 

convenient to solve the compensator/controller. For the convenience of solving the 

compensator/controller, the expression turns out to be such that the series connection and the parallel 

connection of two transfer elements and the inverse of each element are easily calculable. For the 

convenience of object dynamic characteristics measurement, the expression turns out to be such that if 

observable phenomena are continuous with respect to any parameter change then the expressions are 

continuous with respect to the same parameter change. 

Considering that the static approximation is a special case of dynamic approximation, we can 

derive a convenient expression for solution of compensator/controller, which turns out to be the 

transfer function. Furthermore the transfer function expression is assured adequate for the 

measurement of controlled object dynamic characteristics. 

Rewriting the equation in the transfer function expression, for the most popular PID control, and 

solving the controller, we can see the essential information needed is not the transfer function but the 

denominator-expanded-form of the transfer function, which is the MacLaurin series expansion of the 

inverse of transfer function. The expression reserves the calculability of series and  parallel 

connections and inverse. In addition, it has a very convenient property named as IFS (independency 

from successors), which allows us to truncate at any terms in the four basic operations of arithmetic, 

independently from the succeeding terms. From simple simulation studies we can see that the higher 

order terms of the transfer function or the denominator-expanded-form have little effect on the 

performance of control. The fact serves the validity of lower-order approximation of 

distributed-parameter system and we can get very simple design formulae, based on the partial model 

matching from the lowest to the higher terms corresponding to the number of adjustable parameters. 

Although PID control scheme is the most popular in the actual field, we can obtain I-PD control 

scheme from basic consideration of dynamic compensation. Design of I-PD control is far simpler than 

PID because the former is based on more natural idea of compensation.   

The design method is easily extendable to sampled-data (i.e. discrete-time) control system design, 

including the continuous-time control as a special case of sampling period equal to zero. The method 

is also extendable to smooth nonlinear control system design, where either 

denominator-expanded-form of an extended nonlinear transfer function or, equivalently, differential 

equation expression can be used. 


